8* 5%and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

) 4o
Ryogram flow instruction

pory address register

#ory data register
Wnory management unit

kse elimination
MAP 5910 processor

A mgram counter

'BROM or OTP

use accumulator counter

Raal time video processing

¢

The master can choose to send output to an addressed slave if a slave has a
distinct address. The master can choose to receive an input from any slave selected
by it at an instant.

A high-speed communicating multichannel Buffered Serial Port.

A register that holds the address for a memory unit for placing it on the bus
using bus interface unit.

A register that holds the data for or from a memory unit.
A unit to manage the prefetch, paging and segmentation of memories.

A memory addresses allocation table such that the map reflects the available
memory addresses for various uses of the processor. A memory map defines the
addresses of the ROMs and RAMs of the systems.

When a processor architecture refers specifically to the architectural instruction
sets and programmers’ models, the term microarchitecture refers specifically to
the implementation of those architectures. A processor may have CISC
architecture with an RISC microarchitecture implementation.

A process that eliminates unrelated randomly introduced signal components.

A TI processor of unique architectutre in DSP chips of high performance with
low power consumption.

The port on a chip which receives or sends 8 or 16 bits at an instance.

The port on a chip which receives or sends a bit serially at an instance with a
definite rate in kbps [baud rate in UART].

First byte of an instruction for the instruction decoder of the processor. It defines
the operation or process to be performed on the operand(s).

Metrics for evaluating the performance of a system.

There is pipelining also in the superscalar processor. It means than its ALU
circuit divides into n subunits. If in its last part, the processing of a p-th instruction
is taking place at an instant, then at the first part processing of (p+ n) thinstruction
is taking place. There may be muitiple pipelines in a processor to process in
parallel.

A unit to fetch instructions in advance and data in advance from the memory
units.

A processor register to hold the current instruction address to be executed after
a fetch cycle on the buses. ‘

An instruction in which the program counter or instruction pointer changes in a
way different from its normal changes during program execution.

A type of memory which is programmable only once by a device programmer.
OTP is a one-time programmable memory.

A counter that counts the input pulses during a slelect interval. When used as a
timer with a repeatledly loadable value, it functions as a pulse width modulator.

Processing of video signals such that all or most incoming frames are processed
in a time frame such that each processed frame maintains constant phase
differeces in the intervals between them.

RISC with CISC functionality
RISC

Segment register

Slave

Special function register

Stack pointer

Stack
Superscalar processor

Synchronous communication
System register
Thumb® instruction set

Timing diagram

Video accelerator
Watchdog Timer

A Reduced Instruction Set Computer that has one feature that provides a

instruction set and permits limited addressing modes for the sourgd

destination operands in an arithmetic or logic instruction. The hardware ex s
each instruction in a single cycle. f

string or stack. %

A processor or device or system, which receives the input from the sd

B

processor or device or system. This slave is the one having a distinct ag
and is chosen by the master. ;

A register in 8051 for special functions of accumulator, data pointer, timer cog ‘

timer mode, serial buffer, serial control, power down control, ports, etc. ; i

A register that hold an address to define the available memory address to ﬁ dre
the processor can push the régisters and variables on a stack operation and Frlm

where they can be popped.

A block to memory that holds the pushed values for last-in first-out data msi er

on popping back the values. i

A processor with the capacity to fetch, decode and execute more thah
instruction in parallel at an instant.

Processor register.

An instruction set in which each instruction is of 16 bits on a 32-bit proce
gives reduced code density. It is a 16-bit instruction set which enables
performance at 8/16-bit system cost. They are used by ARM processors,)

A diagram that reflects the relative time intervals of the signals on the CW

buses with respect to the processor clock pulses. ;
An accelerator for the video output. :

A timer which is set in advance and program codes are made such that its ovﬁldw

indicates that a process is stuck somewhere and therefore the processor
and restarts. i

g

Data bytes or frames maintain uniform phase differences in serial commum@l dn.

i

ane

It
im

1. Exlpain 8051 architectural features. What are the devices internally present in the classic 8051. How d
interface a programmable peripheral interface in 80517
Describe serial interface, timer/counters and interrupts in 8051.
Describe real-word interfacing. Explain interfacing to keyboard.
Compare memory-mapped IO and IO-mapped IOs.

What are the common structure units in most processors?
Compare Harvard and Princeton memory organizations.

What are the special structural units in processors for digital camera systems, real-time video processing sygtems,
speech compression systems, voice compression systems and video games?

N hseN

ﬂ § Review Questions

p you

sand Advanced Processor Architectures, Memory Organization and Real-world Interfacing

[How do having separate caches for instruction, data and branch-transfer help?

. [What is the advantage of having multiway cache units so that only that a part of the cache unit is activated, which

the necessary data to execute a subset of instructions? List four exemplary processors with multiway caches.
en do you need MAC units at a processor in the system?
plain three-stage pipeline, superscalar processing and branch- and data-dependency penalties.
at are the advantages in Harvard architecture? Why is the ease of accessing stack and data-table at program
nemory less in Harvard memory architecture compared to Princeton memory architecture?

. |Explain three performance metrics of a processor: MIPS, MFLOPS and Dhrystone per second.
. |Why should a program be divided into functions (routines or modules) and each placed in different memory blocks

lor segments?

. |How do the ARM7, ARM 9, ARM 11 and StrongArm differ? When will you prefer ARM7, when ARM 9 and when

ARM11?

. [How does a memory map help in designing a locator program?
. {What do you mean by the terms: Quarter-CIF, EDO RAM, RDRAM, peripheral transcations server, shadow segment,

on-chip DMAC and time-division multiplexing.

. {How does a decoder help in memory and IO device interfacing? Draw four exemplary circuits.

Practice Exercises

). [Draw the memory organization in 8051.
. [How will you interface an 8051 to four servomotors in a robot using timer/counters and ports of 80517
. |A two by three matrix multiplies by another three by two matrix. If data tranfer from a register to another takes

2 ns, addition takes 20 ns and multiplication takes 50 ns, what will be the execution time? How will a MAC unit
help. Asume that these times are same in a DSP with a MAC unit?

. {An array has 10 integers, each of 32 bits. Let an integer be equal to its index in the array multiplied by 1024. Let the

base address in memory be 0x4800. How will the bits be stored for the 0%, 4% and 9* element in (a) big-endian
mode (b) little-endian mode?

. |We can assume that the memory of an embedded system is also a device. List the reasons for it. (Hint: Use of

fpointers like access control registers and the concept of virtual file and RAM disk devices.]
[Nowadays high-performance embedded systems use either an RISC processor or a processor with an RISC core
with a code-optimized CISC instruction set. Why?

. |A circular queue has 100 characters at the memory addresses, each of 32 bits. What will be the total memory space

required, including the space for both the queue pointers?

Estimate the memory requirement for a 500-image digital camera when the resolution is (a) 1024 x 768 pixels,
(b) 640 x 480, (c) 320 x 240 and (d) 160 x 120 pixels and each image stores in compressed jpg format.

'What are the special structural units in processors for digital camera, real-time video processing, speech compression
and video game systems?

Devices and
Communication Buses
for Devices Network

R

The following facts have been presented in the
previous chapters:
e Embedded systems’ hardware consist of pro-
cessors, microcontrollers or DSPs and basic
€ hardware units such as power supply, clock
circuits, reset circuits, memory devices (ROM,
flash and RAM) of different sizes and speed of
access, and 10 peripheral devices and ports for
c the UART, modem, transceiver, timer-counter,
keypad, touch screen or LCD or LED display,
DAC, ADC and pulse dialer
e Embedded system microprocessors interface with
a real world 10 devices, such as DMA and bus
controllers, peripherals, IO ports and keypad.
e The controllers, peripherals and ports have add-
resses using which the processor accesses bytes and
[words. An embedded system connects to devices
such as the keypad, touch screen, multiline display
unit, printer or modem or motors through ports.
e During a read or write operation, the processor
accesses that address in a memory-mapped IO, as
[if it were accessing a memory address. A decoder
takes the system memory or IO address bus signals
as the input and generates a port or device select
signal, CS and selects the port or device.

We can’t think of a computer without 10 devices for the video output, mouse, keyboard
input, CD and magnetic storage. We can'’t think of a mobile smart phone without the
devices for LCD or touchscreen, 10 port interfaces, keypad, timers, dialer, speaker, radio
interface and flash memory storage. Similarly, we can’t think of an embedded system
without 10 devices, timers and other devices. In fact, the devices play the most significant
role in any embedded system. A device connects and accesses to and from the system-
processor and memory either internally or through an internal controller or through a
port, with each port having an assigned port addresses similar to a memory addresses.

Distributed devices are networked using sophisticated 10 buses. For example, take the
case of an automobile: all embedded devices in automobile have a microcontroller, and
network through IO bus. The devices in an automobile are distributed at different locations.
These are networked using a bus called Control Area Network (CAN) bus. Similarly, a
camera interfaces to a computer and printer through a USB bus or Bluetooth device.

Advanced networking devices such as transceivers and encrypting and decrypting
devices operate at high speeds.

A hardware engineer designing an embedded system must, therefore, clearly
understand the features of interface circuits and their speed of operations and the
buses that network the devices.

We will learn the following topics in this chapter:

1. Serial and parallel input, output and 10 ports
2. Synchronous serial-communication devices and examples of High-Level Data
Link Control
3. Asynchronous serial-communication devices and their examples, RS232C and
UART
4. Parallel ports and parallel communication devices
Wireless devices

6. Sophisticated interfacing features in the systems for fast 10s, fast transceivers,
and real time voice and video 10s

7. Timing and counting devices, and the concept of real time clock, software
timers and watchdog timers

8. Inter Integrated Circuit (FC) communication bus between multiple distributed
ICs and the CAN bus as the control network between the distributed devices
in the automobiles

9. Universal Serial Bus (USB) for fast serial transmission and reception between
the host embedded system and distributed serial devices like the keyboard,
printer, scanner and ISDN system

10. IBM Standard Architecture (ISA) and Peripheral Component Interconnect

(PCI)/PCI-X (PCI Extended) buses between a host computer or system and
PC-based devices, systems or cards; for example, PCI bus between the PC
and Network Interface Card (NIC)

“

| Embedded Syptpms

11. Internet-enabled embedded devices and their network protocols
12. Wireless protocols for mobile and wireless networks

~ 3.1 10 TYPES AND EXAMPLES

A serial port is a port for serial communication. Serial communication means that over a given line or ¢hannel
one bit can communicate and the bits transmit at periodic intervals generated by a clock. A serfal port
communication is over short or long distances.

A parallel port is a port for parallel communication. Parallel communication means that multiple bits can
communicate over a set of parallel lines at any given instance. A parallel port communicates within the same
board, between ICs or wires over very short distances of at most less than a meter.

A serial or parallel port can provide certain special features and sophistication (Section 3.4) by pising a
processing element. ‘

Ports can interconnect by wireless. Wireless or mobile communication is serial communication but
wires, can be over a short-range personal area network as well as long-range wireless network, and transgnission
takes place by using carrier frequencies. The carrier modulates the serial bits before transmission in air
[Sections 3.5 and 3.13]. A receiver demodulates and retrieve the serial bits back.

Serial and parallel ports of IO devices can be classified into following IO types: (i) Synchronouk serial
input (ii) Synchronous serial output (iii) Asynchronous serial UART input (iv) Asynchronous seriall UART
output (v) Parallel port one bit input (vi) Parallel one bit output (vii) Parallel port input (viii) Paral]el port
output. Some devices function both as input and as output; for example, a modem.

3.1.1 Synchronous Serial Input

The part 1 in Figure 3.1(a) shows a synchronous input serial port. Each bit in each byte and each received byte
is in synchronization. Synchronization means separation by a constant interval or phase difference [part 2 in
Figure 3.1(a)). If clock period equals T, then each byte at the port is received at input in period 8 T. bytes
are received at constant rates. Each byte at the input port separates by 8 T and data transfer rate for th¢ serial
line bits is 1/T bps [1 bps = 1-bit per second]. The sender, along with the serial bits, also sends the clocK pulses
SCLK (serial clock) to the receiver port pin. The port synchronizes the serial data-input bi{s with
clock bits. ,

The serial data input and clock pulse-input are on same input line when the clock pulses either en¢ode or
modulate serial data input bits suitably. The receiver detects clock pulses and receives data bits after dacoding
or demodulating.

When a separate SCLK input is sent, the receiver detects at the middle, positive or negative edgg of the
clock pulses that indicate whether data-input is 1 or 0 and saves the bits in 8-bit shift register. The pro¢essing
element at the port (peripheral) saves the byte at a port register from where the microprocessor reads the byte.

Synchronous serial input is also called master output slave input (MOSI) when the SCLK is sent fiom the
sender to the receiver and slave is forced to synchronize sent inputs from the master as per the mastey ¢lock
inputs. Synchronous serial input is also called master input slave output (MISO) when the SCLK is sent to the
sender (slave) from the receiver (master) and the slave is forced to synchronize sending the inputs to master as
per the master clock’s outputs.

Synchronous serial input is used for interprocessor transfers, audio inputs and streaming data inputs,

Defn*‘s and Communication Buses for Devices Network @

State
01t 2134151617 1
HEEEEREE
OoDy Seral | 1O = 0
Input . ; ime
Pt [T]] seritinBits
gD Clock (Optional)
State
1 00 01020304050607
o | THXXXXNIXA
Serial — t
Output | 00-07 (@) Time
Port VATA7 .
()7 Seral Ovtout
@ I > Clock (Optional)
Half Duplex Serial In/Out 10-07
10-07 and 00-O7 N } Full Duplex
-7 and .- |, [Serial In/Out
At different Time Slots 00-07
A Clock (Optional)
®
DTE DCE
cs DCD
—
;é_ DSR £
A ——f 3 [OR g
Al -3 tee—_3 UART Serial _
A2 = P Bits for Data In a different
w | TxD RxD = . Phase or
SE Start Bit
<> 5mo w00 Frequency
X P-Bit for State 1
Do-D7 (Optional) grt\:t .
> Stop Bit e

All Integrated in an
Embedded System

(b) (c)

Fig. 3.1 (a) Input serial port, Output Serial port, Bi-directional half-duplex serial port, and Bi-
directional full-duplex serial port (b) Handshaking signals at COM port in computer and
(c) a UART serial port bits

3.1;2 Synchronous Serial Output

The part 3 in Figure 3.1(a) shows a synchronous output serial port. Each bit in each byte is in synchronization
withla clock. The bytes are sent at constant rates [part 4 in Figure 3.1(a)]. If the clock period equals T, then the
data kransfer rate is 1/T bps. The sender sends either the clock pulses at SCLK pin or the serial data output and
clock pulse-input through same output line when the clock pulses either suitably modulate or encode the
seridl output bits.

@ Embedded S#tdms

The processing element at the port (peripheral) sends the byte through a shift register at the port tojwhich
the microprocessor writes the byte.
Synchronous serial output is used for interprocessor transfers, audio outputs and streaming data oytputs.

3.1.3 Synchronous Serial iInput—-Output

The part 5 in Figure 3.1(a) shows a synchronous serial input—output port. Each bit in each byte synchronizes
with the clock input and output. The bytes are sent or received at constant rates as shown in parts (2) 4nd (4)
in Figure 3.1(a)]. The IOs are on same IO line when the clock pulses suitably modulate or encode the serial
input and output, respectively. If the clock period equals T, then the data transfer rate is 1/ T bps. The prodessing
element at the port (peripheral) sends and receives the byte at a port register to or from which the micropracessor
writes or reads the byte.

Synchronous serial input/outputs are also called master input slave output (MISO) and master outpuf slave
input (MOSI), respectively.

They are used for interprocessor transfers and streaming data. The bits are read from or written on magnetic
media such as a hard disk or on optical media such as a CD by using devices with serial synchronous IQ) ports.

The part 6 in Figure 3.1(a) shows the IO synchronous port when input and output lines are separate.

3.1.4 Asynchronous Serial input

Figure 3.1(b) shows the asynchronous input serial port line, denoted by RxD (receive data). Each R
received in each byte at fixed intervals but each received byte is not in synchronization. The bytes can separate
by variable intervals or phase differences. Figure 3.1(c), on the right side, shows the starting point of recgiving
the bits for each byte, indicated by a line transition from 1 to 0 for a period T. When a sender shifts afte every
clock period T, then a byte at the port is received at input in period 10T or 11°T. The time of 2 T is duelto use
of additional bits at the start and end of each byte. An addition time of 1T is taken when a P-bit is sent before
the stop bit.

The bit transfer rate (for the serial line bits) is (1/ T) baud per second but different bytes may be re¢eived
at varying intervals. The word ‘Baud’ is taken from a German word for raindrop. Bytes pour from the gender
like raindrops at irregular intervals. The sender does not send the clock pulses along with the bits.

The receiver detects n bits at the intervals of T from the middle of the first indicating bit. n=0, 1, ...{ 10 or
11, finds out whether the data-input is 1 or 0 and saves the bits in an 8-bit shift register. The processing
element at the port (peripheral) saves the byte at a port register, from where the microprocessor reads the byte.

Asynchronous serial input is also called UART input if the serial input is according to the UART preétocol
(Section 3.2.3). Asynchronous serial input is used for keypad and modem inputs.

3.1.5 Asynchronous Serial Output

Figure 3.1(b) shows the asynchronous output serial port line, denoted by TxD (transmit data). Each bit ip each
byte is sent at fixed intervals but each output byte is not in synchronization (it is separate” by a variable
interval or phase difference). The Figure 3.1(c) shows the starting point of sending the bi. ror each| byte,
which is indicated by a line transition from 1 to O for a period T. The sender port of TxD Joes not send|clock
pulses along with the bits. ,

The sender transmits bytes at the minimum intervals of n T. Bits star: from the middle of the start indicati g;bit,
wheren=0, 1, ..., 10 or 11 and sends the bits through a 10- or 11-bit shift register [Figure 3.1(c)]. The procgssing
element at the port (peripheral) sends the byte at a port register to where the microprocessor writes the byte.

‘ es and Communication Buses for Devices Network @

One bit input, output and IO
Eight or more bit input, output and IO

The part 5 in Figure 3.1(a) on the left side shows the IO serial port (bi-directional half-duplex serial port).
Half [duplex means that at any point communication can only be one way (input or output) on a bi-directional
An example of half-duplex mode is telephone communication. On one telephone line, we can talk only
in th¢ half-duplex mode. The part 6 in Figure 3.1(a) shows the separate input and output serial port lines. Full
dupléx means that the communication can be both ways simultaneously. An example of the full duplex
asynthronous mode of communication is communication between the modem and computer through the TxD
and RxD lines [Figure 3.1(b)].

bte are two types of communication ports for IOs: serial and parallel. Serial line port communication is
hronous when a clock of the master device controls the synchronization of the bits on the line. Serial line
‘communication is asynchronous when clocks of the sender and receiver are independent and bytes are
bived, not necessarily at constant phase differences. Serial communication can be full duplex, which means
itaneously communication both ways, or half duplex, which means one way communication. :

8 Examples of Serial and Parallel Port 10s

Tablg 3.1 gives a classification of IO devices into various types. It also gives examples of each type.

able 3.1 Examples of various types of 10 devices

10 Device Type ; Examples
Senial synchronous input Inter-processor data transfer, reading from CD or hard disk, audio input, video

input, dial tone, network input, transceiver input, scanner input, remote controller
input, serial IO bus input, reading from flash memory using SDIO (Secure Data
Association 10) card :

Semial synchronous output Inter-processor data transfer, multiprocessor communication, writing to CD or
hard disk, audio output, video output, dialer output, network device output,
remote TV Control, transceiver output, and serial IO bus output, writing to
flash memory using SDIO card ~

Setial asynchronous input Keypad controller serial data-in, mice, keyboard controller data in, modem input,
Tn character inputs on serial line [also called UART (universal receiver and
transmitter) input when according to UART mode] '

|
!
;} (Contd)

i
|

Embedded S&e@ns

-4
Parallel port single bit input (i) Completion of a revolution of a wheel, (ii) achieving preset pressurd

electronic balance, (iv) presence of a magnetic piece in the vicinity of or Wi
reach of a robot arm to its end point and (v) filling a liquid up to a fixed I

Parallel port single bit output (i) PWM output for a DAC, which controls liquid level, temperature, p: o
speed or angular position of a rotating shaft or a linear displacement of ani
or a d.c. motor control (ii) pulses to an external circuit

pressure sensor or speed sensor or d.c. motor rpm sensor (ii) Encoder inpggs

Paraliel port output (i) LCD controller for multiline LCD display matrix unit in a cellular p h

motor coil driving output bits ¢

— ——

10 Device Type Examples

Serial asynchronous output Output from modem, output for printer, Ithe output on a serial line [alsoaa]}
UART output when according to UART mode] s

boiler, (iii) exceeding the upper limit of the permitted weight over the pag f

Parallel port input (i) ADC input from liquid level measuring sensor or temperature sensprior

display on screen the phone number, time, messages, character outp s
pictogram bit-images or e-mail or web page (ii) print controller (iii) stdppe

H
ejto

-32 SERIAL COMMUNICATION DEVICES

3.2.1 Synchronous, Iso-synchronous and Asynchronous Communicatiohs

from Serial Devices

Synchronous Communication When a byte (character) or frame (a collection of bytes) of
received or transmitted at constant time intervals with uniform phase differences, the communication is
synchronous. Bits of a data frame are sent in a fixed maximum time interval. Iso-synchronous is a s
case when the maximum time interval can be varied.

ta is
alled
ial

An example of synchronous serial communication is frames sent over a LAN. Frames of data communjcate,
with the time interval between each frame remaining constant. Another example is the inter-processor

communication in a multiprocessor system. Table 3.2 gives a synchronous device port bits.
Figure 3.1(a) part 2 showed the serial IO bit format and serial line states as a function of time.
characteristics of synchronous communication are as follows:

Two

1. Bytes (or frames) maintain a constant phase difference. It means they are synchronous, that §s, in

time

synchronization. There is no permission for sending either the bytes or the frames at random

[Handshaking means that the source and destination first exchange the signals betwe:: them
they communicate the data bits.] The master is the one whose clock pulses guide the ...nsmissio
slave is the one which synchronizes the bits as per the master clock.

intervals; this mode therefore does not provide for handshaking during the communication in%rwi’al.

fore
and

2. A clock ticking at a certain rate must always be there to serially transmit the bits of all the bytds (or

frames). The clock is not always implicit to the synchronous data receiver. The transmitter gend
transmits the clock rate information in the synchronous communication of the data.

rally

Bits at Port Compulsory or Explanation

Optional

Sync code bits or bi- Optional A few bits (each separated by interval AT)

sync code bits or frame as Sync code for frame synchronization or

start and end signaling signaling precedes the data bits!. There may

bits be inversion of code bits after each frame.
Flag bits at start and end are also used in
certain protocols

Data bits Compulsory m frame bits or 8 bits transmit such that each
bit is at the line for time AT or each frame is
at the line for time m.AT 2

Clock bits Mostly not optional Either on a separate clock line or on a single
line such that the clock information is also
embedded with the data bits by an appropriate
encoding or modulation

IReciprogal of AT is the transfer rate in bit per second (bps).

2

Fig
(i) The
parallel
commo
are pre
encodi
Modul
The sy

m may be a large number. It depends on the protocol.

e 3.2 gives ten methods by which synchronous signals, with the clocking information, are sent.
are two separate lines for the data bits and clock. The parallel-in serial-out (PISO) and serial-in
Lout (SIPO) are used for transmitting and receiving the signals for data, respectively. (ii) There is a
line and the clock information is encoded by modulating the clock with the stream of bits. (iii) There
ing and succeeding additional synchronizing and signaling bits. There are five common methods of
the clock information into a serial stream of the bits: (a) Frequency Modulation (FM (b) Mid Frequency
ion (MFM) (c) Manchester coding (d) Quadrature amplitude modulation (QAM) (e) Bi-phase coding.

chronous receiver separates serial bits of the message as well as synchronizing clock.
Synchronization Ways
|
Separate Data Bits Embedded
Clock Pulses Modulated Clock Information
Along with the or Encoded with a Data
Data Bits with Clock Bit Frame Before

Information Transmitting
] l |

PISO SIPO - .
(Tralimit) (Receive) gzzzhgi)tr:zanon (B:Lg?:‘ngc
Preceding a
[| | | l Data Bit-Frame
FM MEM QAM Bi-Phase Manchester (oYNC Code)
In-between frames
Signalling Bits

Fig. 3.2 Ten ways by which the synchronous signals with the clocking information transmit from a

master device to slave device

Asynchronous Communication When a byte (characters) or frame (a collection of bytes) of data is
received or transmitted at variable time intervals, communication is called asynchronous. Voice data on the
line is sent in asynchronous mode. Over a telephone line the communication is asynchronous. Another ¢xample
is keypad communication.

An example of mode of asynchronous communication is RS$232C communication between thg UART
devices (Section 3.2.2).

UART communication (Section 3.2.3) for asynchronous data is used for the transfer of information between
the keypad or keyboard and computer.

Two characteristics of asynchronous communication are as follows:

1. Bytes (or frames) need not maintain a constant phase difference and are asynchronous, that i§, not in
synchronization. Bytes or frames can be sent at variable time intervals. This mode therefore facilitates
in-between handshaking between the serial transmitter port and serial receiver port.

2. Though the clock must tick at a certain rate to transmit bits of a single byte (or frame) seridlly, it is
always implicit to the asynchronous data receiver. The transmitter does not transmit (neither separately
nor by encoding using modulation) along with serial stream of bits any clock rate informy
asynchronous communication. The receiver clock is thus not able to maintain identical freque
constant phase difference with the transmitter clock.

Figures 3.1(a) and (b) or as given in Table 3.2. It can be complex and has to be as per the protocol,
followed by transmitting and receiving devices during communication between them.

Example 3.1

An IBM personal computer has two COM ports (communication ports), COM1 and COM2. Th
8 bytes at 10 addresses Ox3F8 and Ox2F8. !

Figure 3.1(b) showed COM port handshaking signals besides TxD and RxD. When a modem cg#ri
it detects a carrier signal on the telephone line. A modem sends data carrier detect DCD signal at/#int
A modem then communicates data set ready (DSR) signal at time t, when it receives the bytes on
The receiving end responds at time t, by data terminal ready (DTR) signal. After DTR, request
(RTS) signal is sent at time t; and the receiving end responds by clear to send (CTS) signal at timg
After the response CTS, the data bits are transmitted by modem from t, to the receiver terminal 3
successive intervals [Figure 3.1(c)]. Between two sets of bytes sent in asynchronous mode, the§
handshaking signals RTS and CTS can again be exchanged. This explains why the bytes do not
remain synchronized during asynchronous transmission.

A communication system may use the following protocols for synchronous or asynchronous tran
from a device port: RS232C, UART, HDLC, X.25, Frame Relay, ATM, DSL and ADSL. These are

are protocols used in LAN networks. There are a number for protocols for serial communication.
UART and HDLC are described in Sections 3.2.2 to 3.2.4. _
The protocols in embedded network devices such as bridges, routers, embedded Internet appli
bridging, routing, application and web protocols. Internet enabled embedded systems use application protocols
— HTTP (hyper text transfer protocol), HTTPS (hyper text transfer protocol Secure Socket Layer), SMTP
(Simple Mail Transfer Protocol), POP3 (Post office Protocol version 3), ESMTP (Extended SMTP), TELNET
(Tele network), FTP (file transfer protocol), DNS (domain network server), IMAP 4 (Internet Message Exchange
Application Protocol) and Bootp (Bootstrap protocol) and others (Section 3.11). »

s and Communication Buses for Devices Network

bedded wireless appliances use wireless protocols— IrDA, Bluetooth, 802.11 and others (Section 3.13).

Ironous, iso-synchronous and asynchronous are three ways of communication. Clock information is
itted explicitly or implicitly in synchronous communication. The receiver clock continuously maintains
ant phase difference with the transmitter clock. HDLC is a data link protocol for computer networks and
teledommunication devices. R$232C and UART are asynchronous mode communication standard.

3.2.2 RS232C/RS485 Communication

(i) R§$232C RS232C communication is between DTE (computer) COM (communication) port and DCE
(moddm) port. DTE stands for ‘Data Terminal Equipment’. DCE stands for ‘Data Communication Equipment’.
RS232C is an interfacing signal standard between DCE and DTE.

Figure 3.1(b) showed the interfacing (handshaking) signals on a RS232C port. The receive data and transmit
data signals from RS232C port are RxD and TxD, respectively. RS232C port serial RxD and TxD bits are
asynchronous and follow UART protocol (Section 3.2.3). Receiver end voltage level from -3 t0 - 25V
denotes logic 1 and voltage level from +3 to + 25 V denotes logic 0. Transmitter end voltage level from -5 to
— 15 Y denotes logic 1 and voltage level from + 5 to + 15 V denotes logic 0.

0.25 th or 1 m on cable (untwisted) the maximum baud rate can be 115.2 k or 38.4 k baud/s, respectively.
32C port is used for keyboard serial communication at 1200 baud/s asynchronous serial transmission

ith UART mode communication at IBM PC COM port. The signals used are RTS, CTS, TxD and RxD

'/ puter on the other hand has a serial port called COM port (Example 3.1). The mobile device is
~‘ J on a cradle. The mobile device port data-pins connect the cradle pins. The cradle connects to the

(ii) RS485 RS485, now called EIA-485 is a protocol for physical layer in case of two wire full or half fluplex

serial connection between multiple points. Transmission is at 35 Mbps upto 10 meter and 100 Kbpy

up to

1.2 km. Electrial signals are between + 12 V and -7 V. Logic 1 is +ve and 0 is reverse polarity. Differgnce in

potential defines logic 1 and 0. A converter is used to convert RS232C bits to RS485 and another for vice

3.2.3 UART

versa.

Figure 3.1(b) showed handshaking signals of RS232C port and UART serial bits in the output to a serfal line

device. The UART mode is as follows:

1. A line is in non-return to zero (NRZ) state. It means that in the idle state the logic state is 1 at serial lme

2. The start of serial bits is signaled by 1 — 0 transition (negative edge) on the line for a period

the start bit at middle of the interval, logic 0 state of the transmitter start bit.
3. UART bits, when sending a byte, consist of start bit, 8 data bits (for example, for an ASCII ch

which the bits from UART transmitter are sent. One extra bit before the stop bit is program:
P and is called TB8 at the transmitter and RB8 at the receiver.
4. The data bits in certain specific cases can be 5 or 6 or 7 instead of 8.

v
z
g

S
o
=
5
=¥
-
0
5
2
3
=1
3
)
(<]
4
=
o
=4
=
n
o
=
S
[\®]
&
~
5
&
[
<)
(=9
Qo
s}
o
—~
5
[e]
g
5
172
<
o
Qe
=
le]

data in the subsequent data transfers. When P is used as address/data specification, it provides a
to interface a number of UART devices through a common set of TxD and RxD lines and
UART bus.

UART 16550 includes a 16-byte FIFO buffer and is nowadays used more commonly as compared,|

to the

original IBM PC COM port, which had an 8-bit register at UART port and was based on 8250 and did not

include the FIFO buffer.

UART serial port communication is usually either in 10 bits or in 11 bits format: one start bit, 8 da“!ﬂts,
one optional bit and one stop bit. UART communication can be full duplex, which is simultaneouslyjboth

ways, or. half duplex, which is one way. It is an important communication mode. i

3.2.4 HDLC Protocol

o

When data are communicated using the physical devices on a network, synchronous serial communication
may be used. HDLC (High Level Data Link Control) is an International Standard protocol for a data link

network. It is used for linking data from point to point and between multiple points. It is u
telecommunication and computer networks. It is a bit-oriented protocol. The total number of bits
necessarily an integer multiple of a byte or a 32-bit integer. Communication is full duplex.

sed in
is not

Table 3.3 gives the synchronous network device port bits in an HDLC protocol. The reader may refer to a

standard textbook, for example, “Data Communications, Computer Networks and Open Systems” b}
Halsall from Pearson Education (1996) for details of HDLC and its field bits.

v Fred

DeP‘ #s and Communication Buses for Devices Network

Table 3.3 Format of bits in synchronous HDLC protocoi-based network device
-
S.No. Bits! at Port Present Compulsorily Explanation
or Optionally
1 | Frame start and end sign- Compulsory Flag bits at start as well as at end are (01111110)
- aling flag bits
2 | Address bits for Compulsory 8-bits in standard format and 16-bits in extended
; destination ' format ‘
3a Control bits Case 1: Compulsory as per First bit 0, next 3 bits N(S), next bit P/F? and
. information frame case lor2or3 last 3 bits N(R) in standard format N(R)® and
' N(S) = 7 bits each in extended format
3b Control bits case 2: — First two bits (10), next 2 bits RR* or RNR or
supervisory frame REJ or SREJ, next bit P/F and last 3 bits N(R)

in standard format. N(R)* and N(S)* = 7 bits
each in extendd format

3¢ Control bits Case 3: un- — First two bits (11), next 2 bits M®, next bit P/F
numbered frame and last 3-bit remaining bits for M. [8 bits are
immaterial after M bits in extended format]
4 Data bits Compulsory m frame bits transmit such that each bit is at the

line for time AT or, each frame is at the line for
time m.AT and also there is bit stuffing.%

5 FCS (Frame check Compulsory 16-bits in standard format and 32 in extended
sequence) bits format
6 Frame end flag bits Compulsory Flag bits at end are also (01111110)

I Bitg are given in order of their transmission or reception.

2PfFi= 1 and P means when a primary station (Command device) is polling the secondary station (receiving device). P/F = 1
and|F means when receiving device has no data to transmit. Usually it is done in last frame.

3RR{RNR, REJ and SREJ are messages to convey ‘Receiver ready,” ‘Receiver not ready,” ‘Reject,’ and ‘Selective reject’. REJ
or is a negative acknowledgement (NACK). NACK is sent only when the frame is rejected.[A child cries only when milk
is nbt given on need, else it remains silent!] ‘Reject’ means that the receiver received a frame out-of-sequence; it is rejected and
a repeat transmission of all the frames from the point of frame rejection is requested using REJ. ‘Selective reject’ means that a

e is received out-of-sequence; it is to be rejected and a selective repeat transmission is requested for this frame using SREJ.

4N(R) and N(S) means received (earlier) and sending (now) frame sequence numbers. These are modulo 8 or 128 in standard

tended format frame, respectively.

5M flve bits are for a command (or response) from a transmitter. Examples of a command are reset, disconnect or set a defined
mode type; examples of a response are a message from the receiver for a disconnect mode accepted, frame rejected, command
réjepted, and for an unnumbered acknowledgement.

SWhen five 1s transmit for the data, one 0 is stuffed additionally. This prevents misinterpretation by receiver the data bits as
flag bits (01111110).

3.2

Microtontrollers have internal devices for SPI or SCI or SI as explained below. Each device has separate registers
for conptrol, status, serially received data bits and transmitting serial bits. Each device is programmable as described
below| The device can be used in programmed 10 modes or in interrupt driven reception and transmission.

Serial Data Communication using the SPI, SCI and S| Ports

Synchronous Peripheral Interface (SPI) Port Figure 3.3(a) shows an SPI port signals. Figure 3.3(b)
shows SPI port in 68HC11 and 68HC12 microcontroller. It has full-duplex feature for synchronous
communication. There are signals SCLK for serial clock, MOSI and MISO output from and input to master.

Embedded Sﬁ+alms

[Section 3.1]. Figure 3.3(b) shows programmable features and DDR feature of Port D. An SPI fedture is
programmable rates for clock bits, and therefore for the serial out of the data bits down to the interval of
0.5 ps for an 8 MHz crystal at 68HCI11.

SP1 is also programmable for defining the occurrence of negative and positive edges within an interval of
bits at serial data out or in. It is also programmable in the open-drain or totem pole output from a master to a
slave and for device selection as master or slave. This can be done by a signal to hardware input SS|(slave
select when 0) pin. In the hardware the slave select pin connects to ‘1° at the master SPI device and t¢ ‘0’ at
the slave. Defining SPI as slave or master can also be done by software. Programming a bit at the device
control register does this.

68HC12 provides SPI communication device operations at 4 Mbps. SPI device operates up to 2 Mbps in
68HCI11. 5

{

Serial Connect Interface (SCI) Port Figure 3.3(c) shows an SCI port programmable features an*l DDR
port bits in 68HC11/12. SCI is a UART asynchronous mode port. Communication is in full-duplex mode ffor the
SCI transmission and receiver. SCI baud rates are fixed as prescaling bits. Rate not programmable separately for
individual serial in and out lines. A baud rate can be selected among 32 possible ones by the three-rate éts and
two prescaling bits. The SCI receiver has a wake up feature and is programmable by RWU (Receiver wakeup
Unavailable) bit. It is enabled if RWU (1* bit of SCC2, Serial Communication Control Register 2) is set| and is
disabled if RWU is reset. If RWU if set, then the receiver of a slave is not interrupted by the succeeding bytes. SCI
has two control register bits, TB8 and RB8. RWU feature helps in inter-processor communication, and{SCI is
defined for transmission and for reception using the SCC2 bits. UART communication, when programied by
control bits, is in 11-bit format. A number of processors can communicate on the bus in UART mode by|RWU,
when RB8 and TBS bits are set.

There are separate hardware devices at 68HC11 for synchronous and asynchronous communications] These
are SPI and SCI, respectively. 68HC12 provides two SCI communication devices that can operate jat: two
different clock rates. Standard baud rates can be set up to 38.4 kbps. There is only one SCI and standar{l baud
rates in 68HC11 can be set up to 9.6 kbps only.

Serial Interface (SI) Port Figure 3.3(d) shows an SI port. SI is a UART mode asynchronous port interface.
It also functions as USRT (universal synchronous receiver and transmitter). SI is therefore a synchrgnous—
asynchronous serial communication port called USART (universal synchronous—asynchronous receiver and
transmitter) port. It is an internal serial IC device in 8051. There is an on-chip common hardware device
called SI in Intel 80196. Its features are as fuliows: programmable-rates register after loading the 14 bits at
BAUD_RATE register twice. SI operates in one of the following ways: ;
(i) Half-duplex synchronous mode of operation, called mode 0. When a 12 MHz crystal is at 8051|and is
attached to the processor, the clock bits are at the intervals of 1 ps.

(ii) Full-duplex asynchronous serial communication, called mode 1 or 2 or 3. Using a timer, the bapd rate
varies according to the programmed timer bits in modes 1 and 3. Using SMOD bit at SFR|called
PCON, when mode 2 is used, the baud rate is programmable at two rates only. It is 1/64 or 1/32 of
oscillator frequency at 8051. TB8 and RB8, when using 11-bit format, provide the 10" bit fod error-
detection or for indicating whether the sent data byte is a command or data for the receiving SI device.

Most microcontrollers have internal serial communication SPI and SCI or SI-like devices for] serial
communication. The IBM personal computer has two UART chips for the two COM ports. Table 3.4 giyes the
features of internal serial ports in select microcontrollers.

gos and Communication Buses for Devices Network

Slave Select input (for defining

ss |~ an SPI device as slave when ss - ss &
SS active, else it is master)

MOSI = At Master output and at slave input Mos Mos

MISO =~ At master input at slave output MISO MISO

SCLK [~ glock output at SCLK SCLK

master and input at slave [SPI as master J rSPl as slaveJ

(a)
PD.2 MISO
— PD.3 MOSI 2. Programmable as slave or master or by
DDRD
—1 PD.4 SCLK
PD.5 SS 3. Programmabile for the instance of the
occurrence of negative or positive clock
Programmable data 68HC11/12 SPI orboth edges '
?;:ectu:nDreglster 4. Programmable for open-drain output or
po totem potle output
(b)
8051 SI (UART/SyncSerial)
PD.0 RxD P3.0 RxD or Si, or Sgut
PD.1 TxD
 DDRD P3.1 TxD or SCLK
‘ Programmable baud rates, Pr
ogrammable for UART or
::{:9[; ?E_mable s‘:zlr(ecg;::lax:\?cr:ﬁon synchronous serial communication,
proce I
68HC11/12 | and Programmable 8" bit (P-bit) 5&?2232&2 gf‘,’;i’t '(‘:,"_eb,s.;)
SCI (UART) Programmable wake up feature for
the multi-processor communication
(0) (d)
1. SDIO (Secure Digital Input Output) up to eight logical
functions during communication
2. CRC checks on the transferred data
3. Specifies capabilities for additional tries by
retransmission on error .
4. Data communication 48-bit command/request format sDIO 9 pin
for 48-bit control register/status register bits host Connector
5. Supports data transfer in block of bytes controfier
6. Programmable for communication in SPi (20 Mbps) or
1-bit SD (25 Mbps) or 4-bit SD (100 Mbps by 4 serial)

bits sent in paraliel) formats using 4 or 1 or 4 pins
(e)

Fig} 3.3 (a) SPI port signals (b) SPI port programmable features and DDR at port D in 68HC11/12
(c) SCI port in 68HC 11/12 (d) S port in 8051 (e) SDIO communication features (f) sbio
card structure

Table 3.4 Processor with internal serial ports in microcontrollers

i
a
Intel 80196|

BAUD rate generator.

Features Intel 8051 Motorola 1
and Intel M68MCI1IE2 |
8751 1!
Synchronous serial port (half or full duplex) Half Full Half;i,
Asynchronous UART port (half or full duplex) Full Full Full ;| {
Programmability for 10 as well as 11 bits per Yes Yes Yes ¢
byte from UART
Separate un-multiplexed port pins for synchronous No Yes (Separate No .
and UART serial ports 4 Pins) :
Synchronous serial port as a master or slave Software Hardware and Softwarg |
definition by software or hardware software N
UART serial port programmability as a transmitter Yes Yes Yes .| |
or receiver and for additional bit for parity or RWU
or control or other purpose.
Synchronous serial port registers SCON, SBUF SPCR, SPSR
and and
TL-TH 0-1 SPDR
UART serial port registers SCON, SBUF BAUD, SCC!
and TL-TH 0-1 SCC2, SCSR
(Time 2 in 8052) SCIRDR and
' SCITDR
Uses internal timer or uses separate programmable Timer Separate

Microcontrollers have internal devices of three types SPI, SCI and SL SPI is synchronous master slave mgdg

serial full duplex communication. SCI is UART asynchronous transmitter-receiver mode serial full d
communication. SI is synchronous half duplex and asynchronous full duplex UART serial communicati)

3.2.6 Secure Digital Input Output (SDIO)

Secure Digital (SD) Association created a new flash memory card format, called SD format. It is an associdtion
of over 700 companies started from 3 companies in 1999. This SDIO card for SD format IOs [Figure 3.3(e)]
has become a popular feature in handheld mobile devices, PDAs, digital cameras and handheld embe. ded
systems. SD card size is just 0.14 x 2.4 x 3.2 cm. SD card [Figure 3.3(f)] is also allowed to stick out of the
handheld device open slot, which can be at the top in order to facilitate insertion of the SD card.

SDIO is an SD card with programmable IO functionalities such that it () can be used upto eight logical

functions, (b) can provide additional memory storage in SD format, and (c) can provide 10s using protoy
in systems such as IrDA adapter, UART 16550, Ethernet adapter, GPS, WiFi,

camera, barcode or RFID code reader.

Bluetooth, WLAN, dig

cols
rital

H
|
|
|
|

bs and Communication Buses for Devices Network

re 3.3(e) shows an SDIO communication device port features. It supports SPI (Section 3.2.5), 4-bit and
1-bit D formats. Both SPI and SD formats specify that there should be interrupt handling of the 10s and also
the CRC checks on transferred data, and specifies capabilities for more tries on error. SDIO card [Figure 3.3(f)]
has 9 pins. Six pins are for communication using SPI or SD. A processing element function is used as SDIO
host cpntroller to process the I0s. The controller may include SPI controller to support SPI mode for the I0s
and supports the needed protocol functionality internally. Maximum clock rate supported for SPI is 20 MHz for
a maximum of 20 Mbps data transfers. There is an optional 4-bit SD mode, which uses 4 data lines. Maximum
clock fate supported is 25 MHz for maximum 100 Mbps SD bit data transfer in 4-bit SD mode. Four serial bits
simultaneously transmits at four times clock rate on 4 SD lines in this mode. Four-bit SD mode is compromise
between serial and parallel bits communication to enhance serial transfer rate four times. In 1-bit SD mode,
with 25 MHz clock the maximum data transfer rate is 25 Mbps and one serial bit transmits at 1 line only.

SDJO card has a control section called function 0. It necessarily uses function 1 and optionally uses functions
between 2 and 7 (depending on the application in devices used such as Bluetooth, PHS, GPS or digital
camera). Each function has PCMIA (Personal Computer Manufacturer Interface Adapter) defined card
information structure and registers, for example, ID number, function enable bit, supported bus width (1 or 4),
voltagk, power needs, clock rates and interrupt enable bit. Each function’s specifications for the register bits
and protocols have been defined in SD standard. A standard device driver can therefore be written. A new
function can also be defined.

Data communication is in 48-bit command/request format for 48-bit control register/ status register bits
and sypports data transfer of blocks of bytes. For single byte transactions, SDIO card may also include a
UAR’IT 16550 mode communication over the SD bus.

 is an SPI based 9 pin connector card, which supports SPI as well as 1-bit SD or 4-bit SD
unication. SDIO supports 8 logic functions. SDIO functions include I0s with several protocols, for
€x4 ple, DA adapter, UART 16550, Ethernet adapter, GPS, WiFi, Bluetooth, WLAN, digital camera,
batcde or RFID code reader.

- 3£ PARALLEL DEVICE PORTS

The p3rallel port of devices transfers number of bits over the wires in parallel. Parallel wires capacitive effect
reducas the length up to which parallel communication can be done. High capacitance results in delay for the
bits atjthe other end undergoing transition from 0 to 1 or from 1 to 0. High capacitance can also result in noise
and cross talk (induced signals) between the wires. Therefore, parallel port carries the bits upto short distances,
generdlly within a circuit board or IC.

Figpre 3.4(a) shows the parallel input, output, and bi-directional device ports. Figure also shows a device-
interfacing circuit with the processor and system buses. Parallel port inputs 10 to I7 may be to a keypad
controller. Parallel port outputs O0 to O7 may be output bits to LCD display output controller. BR, and BR,,
are the input and output data buffers at bi-directional 10 port.

A device port connects to the address bus signals, A; and A, through a port address decoder. IORD and

are additional control signals for a port device read and write, respectively, in case of an 80x86

processor, which has 10 mapped 10s. The memory read and write signals, RD and WR are used in the
processor with memory mapped IOs [Section 2.2.2].

v

CS-Port Select
BR;-Buffer Register
for input An Input Port
BR,-Buffer Register cs
for Output | BR;
10-17
L < oo
-
< Port IORD
& 2| Addresses An Output Port
* Cs 00-07
Processor | _ e ~ LCD Display
ppe——
IOWR
An /O Port
- >~ BR 100-107
> [] P———> Modem
SE— Messages
. IORD | B < >
Note: i] Touch Screen
A Port can have 1 or 2
or more addresses allotted for it and IOWR
a few address Bus bits at input @
a
cs — 1
Control Iﬁ) Strobe Request } Input
Signals —2_*
IOWR ———— Port Ready
1
4 0 I
Buffer Full
Data Bus }
2 output
DL
Acknowledge
3 |
Interrupt
Request (b)
Fig. 3.4 (a) Parallel input port, output port, and a bi-directional port for connecting the device
(b) The handshaking signals when used by the 10 ports
~é
Example 3.4 4

IBM personal computer has a parallel port with a 25 pin connector. There are 8 IO pins, 5 input pi
status signals (four active high S3 to S6, one active low S7) from external device port (for exampld, |
printing device port) and 4 output pins for control signals (one active high C2 and three active low
CO, C1 and C3.The 8 pins are ground pins (Pins at 0 V). The status pins and control pins are

provided for handshaking between peripheral and computer.

| f(zr

‘bits) or Group B (Port B and Port C lower four bits).

In mode 0 programming for a group, each port group does not use handshaking signals.

Mode 2 programming is used for port A as input as well as output. In mode 2 programming for the
" group A, port A uses handshaking signals, STROBE, PORT READY, BUFFER FULL, ACK and

11

INTERRUPT and port A functions as a bi-directional 10 port.

3. Mode 1 programming is either for port as input or as output. In mode 1 programming for the
* group A or B, port A or B uses only one of the two handshaking signal pairs, either (STROBE,

‘ PORT READY) or (BUFFER FULL, ACK) plus one INTERRUPT signal.

he following characteristics are taken into consideration when interfacing a device port.

. A device port may have multi-byte data input buffers and data output buffers. Suppose there is an
eight-byte buffer. Assuming that a device (as in the 80196 microcontroller) can generate three interrupts,
one on receiving a byte, one on receiving the fourth byte and one when the buffer is full, then the
deadline for servicing these interrupts increases up to eight times compared to the case when there is
a single byte register instead of buffer.
A port may have a DDR (Data Direction Register) (as in the 68HC11 microcontroller). This is an
advantage since each bit of the port is now programmable. It can be set as input or output. DDR
programs the port bits.
Port LSTTL-driving capability and port-loading capability are important characteristics. A port may
be an OD (open drain) port. It has zero driving capability unless the drain connects the positive supply
voltage. If the given port has OD gates, an appropriate pull-up resistance or transistor is connected to
each port pin to provide the driving capability. The drain or collector connects to the supply voltage to
provide the pull-up.
If a given port is quasi bi-directional (as in 80196), then the port pins have limited driving capability,
which suffices for a period of one or a few clock cycles and drives a LSTTL gate for that period. When
this device port connects to more than one LSTTL, then an appropriate pull-up circuit will be required
for the port pins.
There may be multiple or alternate functionality in the port pins; for example, 80196 input port pins.
* Each pin of P2 has an alternative use as multi-channel analog input facility for 8 analog inputs. Another
example is 8051 two ports PO and P2. These port bits also have an alternate function in that they bring
out when needed the internal multiplexed buses for the external program and memories whenever the

Embedded Sy*ms

internal memory is insufficient. Each pin of P3 in 8051 has multiple uses. These are used duringserial
communication, timer/counter signals, interrupt-signals, and R[) and WR control signals for exJSemal
memories. 68HC11 ports B and C are of 8 bits each and have alternative uses for the port pin
One of the alternate functions is to bring out the internal address and data buses, respectively.
6. A port may have provision for multiplexed output to connect to multiple systems or units.
7. A port may have provision for demultiplexed inputs from multiple systems or units.

in it.

A parallel device port can have parallel inputs, parallel outputs, bi-directional and quasi-bi-directiona'l\; QS
A parallel device port can have handshaking pins. A parallel device port can also have control ping for

control-signal outputs to external circuit and status pins for inputs of status signals to external circuity. i

3.3.1 Parallel Port Interfacing with Switches and Keypad

A 16 keys keypad has many applications. A mobile smart phone device has 16 keys and four menu: sele¢t up,
down, left, right keys. Assume that an IO device has two ports, A and C. The device has a processing element
which functions as a keypad-controlling device (controller).

Figure 3.5(a) shows how a set of switches or a keypad of 16 keys and four menu-select keys can interface
to the device. Four bits of an 8-bit input port A (A4-A7) can be used for the four menu select keys. Assumé that
the idle state logic state equals 1. The 16 keys can be considered as arranged in four rows and four colymns.
The other four bits of A (Aj-A;) are inputs from sense lines from four rows. Assume that the idle state ogic
state is equal to 1. The four bits of output port C (Cy-C,) are output to sense lines in four columns.

The processing element in device activates for polling the output port C ten times each second and ends
Co-C3=0000; after a wait it reads Dy-D; and A,-A,. The processing element computes the code of the préssed
key and generates a status signal when a key is found pressed. From the bit pattern found at A,-A4, the
processing element computes 7-bit ASCII code of the pressed key at that instance and can output that code at
Dy-D. It also outputs D; = 1 when a specific key is found pressed, else D, = 0. The processing elemen{ also
processes the bounces when a key is pressed. This takes care of bouncing effects. The processing elemgnt is
thus functioning as a keypad controller, as it is keypad specific.

Example 3.6

A mobile phone keypad is smart and is called T9 keypad. Nine keys are used to enter not only the numHer
but also text of messages. The processing element is programmed as a state machine to compute the AS
code to be sent. A state machine generates the states. For example, a key marked as number 5 is in sta
(0, 5) in reset state, which is also its idle state. The key-state undergoes transition to state (1, 5) when & is
pressed first time. When it is pressed second time within 1 s, the key state becomes (1, j). This state correspoh <$
to character j. If it is pressed third time within 1 s, the key-state becomes (1, k). The state of the key chan
in a cyclic fashion. (1, 5) > (1,j) > (1,k) = (1,) > (1, 5) > (L, j), The transition of a key state occjurs
only if it is found pressed within 1 s of the previous transition, and the appropriate action takes place as per thg
state. The processing element computes the ASCII code from the read value of Ag-Az and key state atjaf
instance. After processing is over or after 1s, the key-state resets to (0, 5).

Two key states simultaneously or separately undergoing transitions can define a transition to anothed
state. For example, when there is transition to (1, j) state after another key state is (1, #), then (1, j) .
undergoes another transition to (1, j), and when that key state is (0, #) it remains at j

13-

ces and Communication Buses for Devices Network

Data bus
16 Keys 0, 1, ..,
Keypad 14, 15 in four column lines
L s input (Polling or Scan lines) and four
i b | 4 processor
" Brocessor || atdevice sense lines
L b ~
1'» Poll lines 0-3
Ports
INTO'
(a)
Data bus
Port
interface |
Processor at device — ::'23 B Stracks 0,1,2,3,4,in4
- phototransistor outputs
“INTR
l PAs |<«—! Index slot detector at 360°
PBo-
PBs | . ToeLEDs
Databus . (b)
Port
Processor interface PCq- _| Input to stepper mator coils
- at device PC; driver transistors
L INTR
(o)
Fig. 3.5 (a) Parallel input port A and a four bit output port C used for interfacing a set of 16 keys in
keypad and four menu select keys (b) Parallel input port A connected to an encoder circuit
which senses the rotated or linear position of a moving shaft and port B connected to 6
LEDS (c) Four bit parallel output port C connected to a stepper motor

rallel device having a number of input and output bits can be used to find the code of the pressed key
m matrix of keys. A keypad controller has a processing element to compute the code of the pressed key
b generate a status signal when any key is found pressed. A mobile phone keypad controller processes
ates of the keys to enable application of same keypad for dialing as well as editing SMS messages.

Parallel Port Interfacing with Encoders

r is a device that measures angular or linear position of a rotating or moving shaft. It has application in
robots and industrial plants. A rotatory-angle encoder has multiple tracks on a rotating disk. Each track has
half df the segments transparent and half opaque. A linear encoder has a multi-slotted plate. A set of n infrared
(IR) LED and phototransistor pairs generate n-bit inputs for a port. The encoder connects to parallel port, as
shown in Figure 3.5(b).

Embedded Sysi+ris

3.3.3 Parallel Port Interfacing with Stepper Motor

A stepper-motor rotates by one step angle when its four coils are given currents in a specific sequence an i that
sequence is altered. For example, assume that currents at an instance equal +1i, 0, 0, 0 in four coils X, %, Y,
Y’. The motor rotates by one step when the currents change to 0, + 1, 0, 0. The sequences at intervals of T are
changed as follows: 1000, 0100, 0010, 0001, 1000, 0100, [The bits in the nibble (set of 4 bits) rotaje by
right shift.] Here 1 corresponds to + i. The motor thus rotates n step angles in interval of (n.T). The sequ¢nces
are changed to rotate the motor in the opposite direction, as follows: 0001, 00010, 0100, 1000, 0001, 0014,
[The bits in the nibble (set of 4 bits) rotate by left shift.] Alternately, the coils are given the currents in the
sequence of 1100, 0110, 0011, 1001, 1100, 0110, ..., or 0011, 0110, 1100, 1001, 0011, 0110, The motor
rotates (n/2) steps in interval equals to (n.T/2). T is the period of clock pulses that drives the motor by ¢l
of coil currents to the next sequence.
The coils connect to parallel port 4 output pins, as shown in Figure 3.5(c). Alternatively, a proce$sing
element called stepper-motor deriver can be used. The driver is given two outputs from the port: clock pulses
and a rotating direction bit r. For example, if r = 1, motor rotates clockwise and if r = 0 then motor rotates|anti-

clockwise. The motor rotates as long as clock pulses are given at the output PC,-PC,.

3.3.4 Parallel Port Interfacing with LCD Controller

An LCD controller has a processing element that needs three control signals as inputs and 8 input/output bits
for parallel set of 8 IO bits. Eight-bit parallel output port B pins PB,-PB- connect LCD controller, as shown
in Figure 3.6(a). LCD controller also connects to one bit PC, at an output port for RS (register select) signal.

ge

Microcontroller
8051 or E
an 10 PC. — Display
RS
controller PCo =
PC, | RW Font table, CGRAM,
‘ LCD driver
PBg- Dat -
PB; asa LCD Display Controlier
(@
INTR
Port E
~ PC
Interface 2 = Display
- PCo
RW
PCs Fonttable, CGRAM, |
P PBy- LCD driver &
rocess
or PB, i
PA- i__,«-" A/D converter y
PA; £ .] 4
. Touch Screen Display + ocessof
_ /INTR .
Data bus for display, control and status words ... /.. Data for Touched Position
(b)
Fig. 3.6 (a) Eight bit parallel output port B connected to an LCD controller (b) 8-bit parallel odtput
port B and 8-bit parallel input port A connected to a touch screen control circuit

s and Communication Buses for Devices Network

Wher RS is reset as 0, PB-PB; communicates a control word to control register of the LCD controller. When
RS is|set as 1, PB,-PB, communicates data to the LCD controller.

LCD controller also connects to a one bit PC, at output port for R/ W (read/write). PC, is set to 1
when|status register of LCD controller is read from PB-PB;. PC, is reset to 0 when writing into LCD controller
the PB,-PB, bits. The processing element generates all signals required for LCD displays.

e LCD controtler is sent control words and data words for initialization and programming PB-PB; bits,
PC, Td PC, outputs for each word to LCD controller. The controller then has to be enabled by sending 1 at E
ed

pin: If connects to one bit PC, at output port for E (enable). There is an interval in which the controller may be in
disab

state. During this interval, it cannot accept instructions or data through the output of control word or
data gort pins. For example, a control instruction is to clear display. The internal processing element has to clear
the b?(l)ls at all the N addresses in N characters LCD display. Assume that in a typical LCD, itis 150 pis. When the
first 1 is written at E, then 0 is written and a 150 s delay program is called in-between; the E output creates a
negaﬁve going pulse at LCD controller. It disables sending of any control word or data for a period of 150 ps.
LD controller has M displayed character ROM addresses. M = 128 for 128 ASCII codes. For each
distiflet ASCII character, there is a 64-bit graphic. The LCD controller has an internal CGRAM (character
grapl‘ic RAM). For each ASCII character, 8 bytes are sent from font table ROM to CGRAM address. CGRAM
has Nl addresses. N = 64 when 64 characters are displayed at the LCD. An address changes by incrementing
or decrementing the cursor position to the previous or next address on screen. By sending appropriate control
words followed by data, the LCD controller is programmed to display up to 64 characters on the screen.

A fidrallel device having 8 output data and 3 bits for E, RS and R/ W can be used to connect to an LCD
chritfoller.

3.3/5 Parallel Port Interfacing with Touchscreen

Toudhscreen is an input device cum LCD display device. It is also interfaced through 10 port B
functioning as data bus far display, control and status words to an LCD display device controller. The interface
useiinnadditional input port A for a byte, which corresponds to the address of the position touched on the screen.

touchscreen is either resistive or capacitive. On touching at a position on the screen, there is change in
resistance or capacitance, which depends on the touched position. A touch can be finger or stylus. The stylus
is about one-fifth thinner than a pencil and about half of the length of the pencil. The resistance or capacitance
isa of a bridge circuit that generates an analog voltage. An 8-bit ADC is given an input from a bridge
circyit and the 8-bit ADC output connects to 8-bit input port A.
ight-bit parallel 10 port B pins PB;-PB;, E, RS and R/ W and eight-bit parallel input port A connect to
screen circuit ports as shown in Figure 3.6(b). An interrupt signal INTR is issued whenever the screen
hed.

bcketPC has a touchscreen. The touchscreen device facilitates GUISs. It can display menus as well as
ftual keypad. Using the keypad on screen and stylus, a set of characters can be entered for creating
liting SMS messages, e-mails, or other files. The stylus is held like a pencil and is used to touch

thé wirtual keypad and then the device selects the menu and commands on the screen.

¥
A parallel device having 8 input data bits from an ADC and 8§ IO data bus and 4 bits for INTR, E

|
|

{BS
and R/W can be used to connect a port interface with a processing element to a touchscreen;} f

ADC generates input bits for the port from the analog signal, which is as per the touched positiép ‘
the screen. 4

(]

4 4

B 3.4 SOPHISTICATED INTERFACING FEATURES IN DEVICE PORTS

A device port may not be as simple as the one for a stepper motor port or for a serial line UART. Nowadays,
a complex embedded system has highly sophisticated 10 devices, for example, SDIO card (Section 3.2.6), IO
devices with fast serialization and de-serialization of data, fast transceiver, and real time video processing
system. The following are the few sophisticated interfacing device and port features.

1. Let the operation voltage level expected for logic state 1 =5 V (TTL or CMOS). The Schmitt trjgger
circuit has a property that when a transition from 0 to 1 occurs, only if the voltage level exceeds 3/3 of
the 5 V level is there a transition to 1. Similarly, when a transition from 1 to 0 occurs, only ff the
voltage level lowers below 1/3 of the 5 V level is there a transition to 0. Hence, the Schmitt trigger
circuit eliminates noise as large as 2/3 of 5 V, or 3.3 V, when it is superimposed at an input line tp the
device. One great advantage of the in-built Schmitt trigger circuit at the port is conditioning of the
signal by noise elimination. Otherwise, a device port input will need an external chip for Schmitt
trigger-based noise elimination. Such a device is used in transceivers for repeating systems, which are
used in long distance communication.

2. When a device port is waiting for instructions, power management can be done at the gates of the device.
Lately, a new technology called DataGate (from Xilinx) has been developed for use at ports. DataGate is
a programmable ON/OFF switch for power management; DataGate makes it possible to reduce bwer
consumption by reducing unnecessary toggling of inputs when these are not in use. The great advarjtage
of an inbuilt DataGate-like circuit at a device port is reduced power dissipation when the device pért is
operated at fast speeds. Such a device is extremely useful in systems connected to a common bus§ and
there is a need to control unnecessary input toggling. For example, in a bus interface unit, the i put
signals should activate only when the input has to be passed to the circuit. As the number of bus interfaces
in the system grows, the demand to prevent needless switching of input signals increases.

3. Earlier, port interfaces used to be either open drain CMOSs or TTLs or RS232Cs. (i) Nowadays, a
system may be required to operate at a voltage lower than 5 V. [Recall Section 1.3.1.] Low Voltage
TTL (LVTTL) and Low Voltage CMOS (LVCMOS) gates may be used at the device ports for 15 V
10. (ii) Nowadays, a system may be required to operate using advanced IO standard interfaces. Exa:Iles
are High Speed Transreceiver Logic (HSTL) and Stub-series Terminated Logic (SSTL) standdrds.
HSTL is used for high-speed operations; SSTL is used when the buses are to be isolated from relatiyely
large stubs.

4. A device connects to a system bus and also to IO bus when it is networked with other de :es. DeVice
and bus-impedances during an IO should match. Else, line reflections occur. Recent deve. pments mjake
it feasible to match these dynamically. For example, a new technology, called XCITE (Xilinx Contralled
Impedance Technology) can be used. The great advantage of an inbuilt device for dynamically matghed
impedances is that when resistors are replaced with digitally, dynamically controlled and matched
impedances in the devices, there are no line reflections and therefore no missing bits or bus faults.

D+%s and Communication Buses for Devices Network @

5.| An IO device may consist of multiple gigabit (622 Mbps to 3.125 Gbps) transceivers (MGTs). Special

support circuitry is needed for this rate. Rocker IO ™ serial transreceivers are examples of circuits

that provide support circuitry at this rate. ‘

6.} A device for an 10 may integrate a SerDes (serialization and de-serialization) subunit. SerDes is a

standard subunit in a device where the bytes placed at ‘transmit holding buffer’ serialize on transmission,

and once the bits are received these de-serialize and are placed at the ‘receiver buffer’. Once the

device SerDes subunit is configured, serialization and de-serialization is done automatically without

the use of the processor instructions. The great advantage of the SerDes unit is that these operations

are fast when compared to operations without SerDes. [A device for IO may integrate a DAA (direct

access arrangement using analog IOs along with one master and seven slave CODECs) or McBSP
| (multi channel buffered serial port with high speed communication) subunit when serializing.

7.1 Recently, multiple 10 standards have been developed for IO devices. A support to the multiple 10
| standards may be needed in certain embedded systems. A technology, Flexible Select I0 ™ -Ultra
| technology, supports over 20 single-ended and differential IO signaling standards. Advantages of
| multiple standard device ports are obvious.

8. ' An 10 device may integrate a digital Physical Coding Sublayer (PCS). Analog audio and video signals
i can then be pulse code modulated (PCM) at the sublayer. The PCS sublayer directly provides codes
| from analog inputs within the device itself. The codes are then saved in the device data buffers. The
- advantage of an inbuilt PCS at device port is that there is then no need of external PCM coding.
| Besides, these operations are performed in the background as well as fast. It improves the system’s

performance when there are multimedia inputs at the device.

9.1 A device for IO may integrate an analog unit Physical Media Attachment (PMA) for connecting direct

inputs and outputs of voice, music, video and images. The great advantage of inbuilt PMA is that the

device directly connects to physical media. PMA is needed for real-time processing of video and
audio inputs at the device.

pdays, IO devices have sophisticated features. Schmitt trigger inputs are used for noise elimination.
#s with low voltage gates and devices using power management by preventing unnecessary toggling
?nputs are used for sophisticated applications. Dynamically controlled impedance matching is a new

:‘logy and it eliminates line reflections when interfacing the devices. The SerDes subunit serializes
erializes outputs and inputs in the devices. A port may have DAA, McBSP, PCS and PMA subunits
alog 10s for video and audio devices.

 WIRELESS DEVICES

Wireleps devices have become very common in recent years for serial transmission of bits.

Wi

-

teless devices use infrared (IR) or radio frequencies after suitable modulation of data bits. I'DA

(Sectipn 3.13.1), Bluetooth (Section 3.13.2), WiFi, 802.11 WLAN (Section 3.13.3) and ZigBee
(Sectidn 3.13.4) have become popular protocols for wireless communication of data bits from a source to the

receiver.

An IR source communicates over a line of sight and the receiver phototransistor is used for detecting
infrarefl rays. Example of applications of IR communication includes handheld TV remote controllers and

robotid

systems. IR devices use IrDA protocol.

Embedded %ﬁms

Radio frequencies communicate over short and long distances. The transmitter and receiver use amtennae
to transmit and receive signals and modulator and demodulators to carry the data bits using RF frequencies.
Mobile GSM wireless devices use 890-915 MHz, 1710-1785 MHz, or 1850-1910 MHz bands.
Mobile CDMA wireless devices use 2 GHz carrier frequencies. Bluetooth and ZigBee wireless 1iev1ce§
(Sections 3.13.2 and 3.13.4) use 2.4 GHz or 900 MHz frequencies.

The number of frequency bands is limited, while a large number of devices may need to commﬁmcate
Therefore, time and frequency division multiplexing are used. An innovative method is radio frequency
hopping over a wider spectrum, as in Bluetooth devices. The transmitted carrier frequencies hop|among
different channels at a given hopping rate. The transmitter modulates the data bits as per protocol specifi¢ations.
The receiver tunes to these hopped carrier frequencies at a given hopping rate and in the same Hopping
sequence as the ones used by the transmitter. The receiver demodulates and detects the data bits as per physmal-
layer protocol used for transmitting. 1

Several wireless devices network use FHSS or DSSS transmitters and receivers. Popular protm#ls% are
IrDA, Bluetooth, 802.11 and ZigBee.

i

- 3.6 TIMER AND COUNTING DEVICES

Most embedded systems need a timing device.

3.6.1 Timing Device

A timer device is a device that counts the regular interval (8T) clock pulses at its input. The counts ar¢ stored
and incremented on each pulse. It has output bits (in a count register or at the output pins) for the period of
counts. The counts muitiplied by interval 8T gives the time. The (counts—initial counts) X 8T interval gjves the
time interval between two instances when the present count bits are read and the initial counts are read. It has
an input pin (or a control bit in a control register) for resetting to make all count bits = 0. It has an oufput pin
(or a status bit in status register) for output when all count bts equalQ after reaching the maximum value,
which also means timeout on the overflow.

3.6.2 Counting Device

A counting device is a device that counts the input for events that may occur at irregular or regular iq’tervals.
The counts gives the number of input events or pulses since it was last read.

Blind Counting Synchronization A counting device may be a free running (blind counting) device
with a prescaler for the clock input pulses and for comparing the counts with the ones preloaded in a jompare
register. The prescalar can be programmed as p = 1, 2, 4, 8, 16, 32, ..., by programming a prescaler fegister.
It divides the input pulses as per the programmed value of p. It has an output pin (or a status bit in the status
register) for output when all count bits equal 0 after reaching the maximum value, which also meaps after
timeout or on overflow. The counter overflows after p x 2" x 8T interval. It can have an input pin (or acontrol
bit in control register) for enabling an output when all count bits equal count preloaded in the compare
register. At that instance, a status bit or output pin also sets in and an interrupt can occur for event of confparison
equality. This device is useful for the alarm or processor interrupts at preset instances or after preset iftervals
with respect to another event from another source. ’

DE s» es and Communication Buses for Devices Network

¥

The counting device may be the free running (blind counting) device with a prescalar for the clock input
pulsds, for comparing the counts with the ones preloaded in a compare register as well as for capturing counts
on ar] input event. This device functions are similar to the above, but there is an addition input pin for sensing
an event and for saving the counts at the instance of that event. At this instance, a status bit can also set in and
a processor interrupt can occur for the capture event.

The above device is useful for alarm generation and processor interrupts at the preset times as well as for
the instances of occurrences of the events and processor interrupts for requesting the processor to use
the daptured counts on the events. Alarm generation can be synchronized with the input capture events.
Writing counts into the compare register does this. Counts in the register are set equal to capture register

counts plus additional counts, which define the interval after which an alarm is to be generated.

13{ ﬁnd counting free running counter with prescaling, compare and capture registers has a number of
prilications. It is useful for action or initiating a chain of actions, and processor interrupts at the preset
ces as well as for noting the instances of occurrences of the events and processor interrupts for
esting the processor to use the captured counts on the events for future actions.

3.633 Timer cum Counting Device

A ti;ter cum counting device is a counting device that has two functions. (1) It counts the input due to the events

at irfegular instances and (2) It counts the clock input pulses at regular intervals. An input or a status bit in the

timi:*g device register controls the mode as timer or counter. The counts gives the number of input events or

pulses since it was last read. It has an output pin (or a status bit in status register) for output when all count bits

equal O after reaching the maximum value, which also means timeout or overflow interrupts to the processor.
ble 3.5 lists twelve uses of a timer device. It also explains the meaning of each use.

Table 3.5 Uses of Timer Device

S.No. Applications and Explanation

1. Real Time Clock Ticks (functioning as system heart beats). [Real time clock is a clock that once the
system starts it, does not stop and can’t be reset. Its count value can’t be reloaded. Real time endlessly
flows and never returns!] Real Time Clock is set for ticks using prescaling bits and rate-set bits in
appropriate control registers. Section 3.8 gives the details.

Initiating an event after a preset delay time. Delay is as per count-value loaded.

Initiating an event (or a pair of events or a chain of events) after a comparison between the preset
time with counted value. Preset time is loaded in a Compare Register. [It is similar to presetting an
alarm.]

4. Capturing the count-value at the timer on an event. The information of time (instance of the event)
is thus stored at the capture register.

5. Finding the time interval between two events. Counts are captured at each event in the capture
register and read. The intervals are thus found out. A service routine does the counts read on interrupt.

6. Wait for a message from a queue or mailbox or semaphore for a preset time when using an RTOS.
There is a predefined waiting period before RTOS lets a task run without waiting for the message.
(Section 7.4)

(Contd)

Embedded Sy‘i#ms

S.No. : Applications and Explanation - ;
Watchdog timer. It resets the system after a defined time. Section 3.7 gives details. 1
8. Baud or Bit Rate Control for serial communication on a line or network. Timer timeout intérfupts
define the time of each baud. i
9, Input pulse counting when using a timer, which is ticked by giving non-periodic inputs instéidi;of
the clock inputs. The timer acts as a counter if, in place of clock inputs, the inputs are given th the
timer for each instance to be counted. ¥
10. Scheduling of various tasks. A chain of software-timer interrupts and RTOS uses these inte! séto

schedule the tasks.

Il Time slicing of various tasks. A multitasking or multiprogrammed operating system presen
illusion that multiple tasks or programs are running simultaneously by switching between prog
very rapidly, for example, after every 16.6 ms. This process is known as context switch. I
switches after preset time-slice from one running task to the next. Each task can therefore |
predefined slots of time. o

12. Time division multiplexing (TDM). Timer device is used for multiplexing the input from a nugber
of channels. Each channel input is allotted a distinct and fixed-time slot to get a TDM outplg
example, multiple telephone calls are the inputs and TDM device generates the TDM outpt
launching it into the optical fibre.] ‘

A timing device has number of states and Table 3.6 gives the states.

Table 3.6 States in a timer

— ——
States i

Reset State (initial count equals 0)

Initial Load State (initial count loaded)

Present State (counting or idle or before start or after overflow or overrun)

Overflow State (count received to make count equal 0 after reaching the maximum count)
Overrun State (several counts received after reaching the overflow state)

Running (Active) or Stop (Blocked) state

Finished (Done) state (stopped after a preset time interval or timeout)

Reset enabled/disabled State (¢nabled resetting of count equal 0 by an input) :
Load enabled/disabled State (reset count equals initial count after the timeout) 1k
Auto Re-Load enabled/disabled State (enabled count equals initial count after the timeout) “
Service Routine Execution enable/disable State (enabled after timeout or overflow)

- v
SV PN YA WL~ |
)

—
—

At least one hardware timer device is a must in a system. It is used as a system clock. Let number of system
clock ticks needed before a system interrupt occurs equals numTicks. The hardware timer gets the input from
a clock-out signal from the processor and activates the system clock tick as per the numTicks preset at the
hardware timer. On each system clock tick, the user-mode task interrupts and the system takes control, The
system enables the privileged mode actions and the CPU context switches as per the preset state of the sygtem.
The system control actions are performed by operating system (software).

and Communication Buses for Devices Network @

Figure 3.7 shows hardware timer control bits (and signals) and status flags. Control bits are as per the
hardware signals and corresponding bits at control register. Control bits (or signals) can be of nine types.
Thesq are: (i) Timer enable (to activate a timer). (ii) Timer start (to start counting at each clock input).
(iii) Timer stop (to stop counting) from the next clock input. (iv) Prescaling bits (to divide the clock-out
frequéncy signal from the processor). (v) Up count Enable (to enable counting up by incrementing the count
valuejon each clock input) (vi) Down count Enable (to decrement on a clock input). (vii) Load enable (to
enabl¢ loading of a value at a register into the timer). (viii) Timer-interrupt enable (to enable interrupt servicing
when{the timer outs (overflows) and reaches count value equals 0) (ix) Time out enable {to enable a signal
whenlthe timer overflows (reaches count equals 0)] to another device.

| Timer enable ————— _ ypcount L0ad enable —{ - Control Variables
: = True ¥ - Status Flags
: Timer ———— =
| Preset Time
stop Downcount Initial A
= False Count & 1~ Count that
Timer P holds the
start AN count of
T Load - timer
s Memo
nr N ! ry
y Status Flag
Internal Pre- . n-bit |Timeout -
dofskes Scalar T1 Ctimer Timer
pu interrupt flag
T P Count is variable ;
between 0 Control variable
+ Ve edge and Interrupt
or -
— Ve edge ") enable
asan A hardware timer is a counter that gets clock period
event inputs at regular intervals

Fig. 3.7 Signals, clock-inputs, control bits and status flags at registers or memory in a hardware
timer device

Stqtus flag is as per the corresponding hardware signal time-out from the hardware timer. This flag and
signal set when the timer all bits (count value) reach to 0.
le 3.7 lists ten forms of the timers for the uses listed in Table 3.5. Software timer (SWT) is an innovative

system clock or any other hardware-timing device ticks and generates one interrupt or a chain of
pts at periodic intervals. This interval is as per the count-value set. Now, the interrupt becomes a

_afe set as per the application. There is no hardware input or output in an SWT. A flag sets when the
SWT|count-value reaches O after reading the maximum. Table 3.8 lists all the variables of SWT. It
s the control-bits and status flags. SWT thus has similar control variables and flags as in the hardware
timer jor counter.

actions are analogous to that of a hardware timer. While there is physical limit (1, 2 or 3 or 4) for the
number of hardware timers in a system, SWTs can be limited by the number of interrupt vectors provided by
the uéer. Processors (microcontrollers) also define the interrupt vector addresses of two or four SWTs.

i

Embedded Systems

Load software timer) 'QL
with numticks and Control Variabl

enable all control variables ~1 _ Status flags
A4~ numTicks
System ——»| Software Timer " Count
ticks 4
SWT_F
Memory
Control variables Status Flag
Up count SWT _Load
Load enable SWTJDEE Enable
enable Y Time out i SWT Timeout
—L / —1 interrupt / | —T Flag "
enable / \\
Down count SWT. SWT_Running SWT_Finished
enable Count
Enabled

Execute a Service Routine, for example, for an
ADC scan and Frame read in camera [Figure 4.3(b)]

Fig. 3.8 Control bits, status flags and variables of a software timer

Table 3.7 Ten forms of a timer

S.No. Types
1. Hardware internal timer
2. Software timer (SWT)
3. User software-controlled hardware timer.
4. RTOS-controlled hardware timer. An RTOS can define the clock ticks per second of a hardware tigner at

a system. [Refer to function OS_Ticks (N) in Section 9.2.1.])
5. Timer with periodic time-out events (auto-reloading after overflow state). A timer may be prog ble
for auto-reload after each time-out.

On the event or reaching a state one shot timer starts and after the time out another state or event ¢
Up count action Timer. It is a timer that increments on each count-input from a clock.

Down count action timer. It is a timer that decrements on each count-input.

Timer with its overflow status bit (flag), which auto-resets as soon as interrupt service routine starts
Timer with overflow-flag, which does not auto reset.

SRR

Timing devices are needed for a number of uses in a system. (i) There can only be a limited number of h rdware
timers present in the system. A system has at least one hardware timer. The system clock is configurex fiom
this. A microcontroller may have 2, 3 or 4 hardware timers. One of the hardware timer ticks forms the,ﬁv puts
from the internal clock of the processor and generates the system clock. Using the systems clock or injefnal
clock, the number of software timers can be drven. These timers are programmable by the device driver proj
(ii) A software timer is software that executes and increases or decreases a count-variable (count value)]

interrupt on a timer output or on a real-time clock interrupt. The software timer also generates inte pt on
overflow of count-value or on finishing value. Software timers are used as virtual timing devices. Therq are a
number of control bits and a time-out status flag in each timer device. ‘

i an

D&vir}es and Communication Buses for Devices Network .

Table 3.8 Variables for control bits and status in a software timer

S

32 or 16 or 8 or 1-bit variables

Reset Value 32/16/8

Initial Load Value (numTicks) 32/16/8
Count-value (Preset value) 32/16/8
Maximum Value 32/16/8

Minimum Value 32/16/8

Timer run enable bit

Timer interrupt enable bit

Timer reset enable bit

Timer load enable bit

Timer reload (after finished state) enable bit
Overflow-flag

T T e e R IR E PR

WATCHDOG TIMER

dog timer is a timing device that can be set for a preset time interval, and an event must occur during
terval else the device will generate the timeout signal. For example, we anticipate that a set of tasks
must|finish within 100 ms. The watchdog timer disables and stops in case the tasks finish within 100 ms. The
watchdog timer generates interrupts after 100 ms and executes a routine that runs because the tasks failed to
in the anticipated interval. A software task can also be programmed as a watchdog timer (Section 9.3.3).
A microcontroller may also provide for the watchdog timer.

he watchdog timer has a number of applications. One application in a mobile phone is that the display is
turned off in case no GUI interaction takes place within a specified time. The interval is usually set at 15, 20,
25, or 30 s in a mobile phone. This saves power.

other application in a mobile phone is that if a given menu is not selected by a click within a preset time
interyal, another menu can be presented or a beep can be generated to invite user’s attention.

application in a temperature controller is that if a controller takes no action to switch off the current
n the preset time, the current is switched off and a warning signal raised, indicating controller failure.
e to switch off current may cause a boiler in which water is heated to burst.

E jample 3.8

68 BC11 microcontroller has a watchdog timer in the hardware. There are two registers, CONFIG (system
cprifiguration control register) and COPRST (computer operating properly and processor reset on failure).
Théy are for programming the interrupts of watchdog timer. CONFIG has a bit, NOCOP. It configures
when the processor writes the configuration word at address 0x003F. NOCOP is the 2™ bit of CONFIG. If
fbi ‘bit is reset to 0, the COP facility is enabled. [COP means computer (68HC11) operating properly
wajehdog timer. The COP watchdog timer provides for keeping a watch on execution time of the

Embedded Syftams

OxFFFB, respectively. If these 16 bits are same as the bits in OxFFFE and OxFFFF, then the microcori
executes instructions, which are same as when it resets on power up or else it executes the routin 4
16-bit address fetched from OxFFFE and OxFFFF whenever there is failure within the watched time i it

The Oth and Ist bit of the option register, OPTION, at the address 0x0039 are the CR, and CR;
NOCOP resets (0) and CR,-CR, = 0-0, the watchdog timer time out occurs after every 2'6 puls ot
T = 0.5 ps for the processor when the E clock output is 2 MHz, the WDT time-out occurs at e ,.
16.384 ms (2!6 x 0.5 ps) unless the user software stores at desired intervals before a time out, first the
0x55 and then the OxAA at the computer reset control register COPRST. This means user program
resets the watchlog timer by itself after finishing the watched section of the program. [After 2!5 |
pulses if CR;-CRy = 0-1, 2!4 pulses for 1-0, 2! pulses for 1-1].

A watchdog timer has a number of applications and is a timing device such that it is set for a prese! ine
interval and an event must occur during that interval else the device will generate a timeout sig
interrupt for the failure to get that event in the watched time interval.

~ 3.8 REAL TIME CLOCK

Real time clock (RTC) is a clock that causes occurances of regular interval interrupts on its each tick (timeout).
An interrupt service routine executes on each timeout (overflow) of this clock. This timing devicg once
started never resets or is never reloaded with another value. Once it is set, it is not modified later. The RTC is
used in a system to save the current time and date. The RTC is also used in a system to initiate return of dontrol
to the system (OS) after the preset system clock periods.

Example 3.9 ig
(i) Assume that a bardware timer of an RTC for calendar is programmed to interrupt after every 5.13 f S.
- Assume- that at each tick (interrupt) a service routine runs and updates at a memory location. Withik %n:
day (86400 s) there will be 22 ticks, the memory location will reach 0x000000 after reaching the maxijshd
value OxFFFFFF. Within 256 days there will be 232 ticks, the memory location will reach 0x000Q40pD0
after reaching the maximum value OxFFFFFFFF. Note that battery must be used to protect the memog¥ {
that long period.
(i) Assume that an RTC has to implement using a software timer. Assume that a hardware 16-bit} *
ticks from processor clock after 0.5 ps. It will overflow and execute an overflow interrupt service rgijti
after 2! s = 32.768 ms. The interrupt service routine can generate a port bit output after every time i *
and can also call a software routine or sends a message for a task. If n = 30, the RTC initiated softwa
run every 30 x 32.768 ms, which is close to 1 s. :
(i) A real time clock timer for interrupts at regular intervals is present in a microcontroller. 68 H
has a register called the Pulse Accumulator Control Register, PACTL and two lowest signiﬁcancé;? it
RT,-RT, (1* and 0"). PACTL is write only. If the RT,-RT,, pair is 00, an interrupt can occur after 2'3
of the E clock. If the E clock pulses are of 2 MHz and thus T is 0.5 s, the interrupts from a real time
occur after each 4.096 ms. Tf the RT,-RT, pair is 01, an interrupt can occur after 214 pulses of the E
that is, after each 8.192 ms. If the RT 1-RT, pair is 10, the interrupt can occur after 2'5 pulses d

k ': and Communication Buses for Devices Network

BEK, that is after each 16.384 ms. If the RT,-RT, pair is 11, an interrupt can occur after each 2!¢ pulses
'the E clock, that is, after each 32.768 ms. The real time clock is based on a free running counter in
:11. RT,-RT,, bits control its rate of ticking.

I'Me interrupts from a real time clock are disabled or enabled by I bit in clock control
diregister. The interrupts from real time clocks are also locally masked by the 6 bit, RTI in timer
infesiupt mask register2, TMASK?2. This bit is set to unmask and reset to mask the real time clock interrupts.
RT1 and I bits permit the interrupt request for real time clock timeout then the microcontroller fetches the
wét and higher bytes of the interrupt servicing routine address from the addresses OxXFFFO for higher
nd OxFFF1 (for lower byte). This is the vector address for real time clock i mterrupts in 68HC11. The
gipt service routine must clear (0) the RTIF, which is interrupt flag for the real time clock interrupts.
RTIF is a bit in timer interrupt flag register2, TFLG2. The TFLAG?2 is at address 0x0025. It is set
’ h interrupt from the real time clock interrupt and therefore it must be cleared in order to
¥ next interrupt before returning from the corresponding service routine and before the next
me clock-interrupt occurs.

e ‘ time clock (RTC) provides system clock and it has a number of applications. It is a clock that generates
b interrupts at preset intervals. An interrupt service routine executes on each tick (timeout or overflow)
jis clock. This timing device once started is generally never reset or never reloaded to another value.

NETWORKED EMBEDDED SYSTEMS

Each ispecific 10 device may be connected to others using specific interfaces; for example, an IO device
connécts and is interfaced to an LCD controller, keyboard controller or print controller using specific interface.
Bus cpommunication simplifies the number of connections and provides a common protocol for interconnecting
different or same type of IO devices.

Any device that is compatible with a system’s IO bus can be added to the system (assuming an appropriate
device driver program is available), and a device that is compatible with a particular IO bus can be integrated
into any system that uses that type of bus. This makes systems that use IO buses very flexible, as opposed to
direct interconnections between the processor and each IO device, and it allows system support to many
different IO devices (depending on the needs of its users), and it also allows users to change the IO devices

ed by all the devices, which connect to the bus. Even worse, electrical constraints (wire length and
ission line effects) cause buses to have less bandwidth than using the same number of wires to connect

dwidth of a bus is 200 Mbps. If the bus communicates two devices simultaneously then it does so by
ps communication by each.

type51 of IO buses, each functioning accordmg to specific protocols
1} Using a serial 1O bus allows a computer or controller or embedded system to interface network with a
§ wide range of IO devices without having to implement a specific interface for each 10 device. When

Embedded Sy#r#s

Sections 3.10.1 to 3.10.5 describe the serial bus communication protocols.
2. Using a parallel IO bus allows a computer or controller or embedded system to interface with an
of internal systems at very short distances without having to implement a specific interface for
device. Section 3.11 describes the parallel bus communication protocols.
3. Using the Internet or intranet, a computer, controller or embedded system’s 10 device can in

Embedded systems are distributed and networked using a serial or parallel bus or wireless protocol so war

and appropriate hardware.

‘ RAM I ROM
Memory bus

|] L
Address bus
I | [
Data bus
|] [

Control bus

]

Serial bus controller (for example,
USB or 12C or CAN)
11

L — 1 } L }
90 Devicaimertace | | 10 Devicenteriace | | 10 Devicentertace | | 10 Devios intertace |
[[[[1
Processor of Processor of Processor of Processor of
system B system C system D system E

3
i

Fig. 3.9 A processor of embedded system connected to system memory bus and networked: to

other systems through a serial bus

-310 SERIAL BUS COMMUNICATION PROTOCOLS

Figure 3.9 shows a processor of embedded system connected to system memory bus and networked to
systems through a serial bus. Sections 3.10.1 to 3.10.5 describe popular serial buses. -

pther

s and Communication Buses for Devices Network

3.10{1 I>C Bus

Assume that there are number of device circuits in a number of processes in a plant, one IC each for measuring
tempetatures and pressures. These ICs mutually network through a common synchronous serial bus. I>)C
(Inter IC connect) bus is a popular bus for these circuits. There are three I2C bus standards: Industrial 100 kbps
I2C, 100 kbps SM I2C, and 400 kbps I’C. The I’C was originally developed at Philips Semiconductors.

Theé I2C Bus has two lines that carry its signals— one line is for clock and one is for bidirectional data. There
isa prl tocol for I2C bus. Figure 3.10(a) shows the signals during a transfer of a byte when using I°C bus.

Ea¢h device has an address using which the data transfers take place. The master can address 127 other
slaves at an instance. It has a processing element functioning as a bus controller or a microcontroller with I’C
bus inkerface circuit. Each slave can also optionally have an I2C bus controller and processing element. A
numbér of masters can also connect to the bus. However, at any instance, there can be only one master, which

is onelthat initiates a data transfer on SDA (serial data) line and which transmits the SCL (serial clock) pulses.

From §the master or slave, a data frame has fields beginning from start bit as per Table 3.9. Figure 3.10(b)
showq the format of the bits at the IC bus.

Table 3.9

Fi ie14 and its length Explanation

Firsﬁl field of 1-bit It is start bit similar to the one in a UART.

Seco'yld field of 7 bits It is called the address field. It defines the slave address being sent the data

] frame (of many bytes) by the master.

Third field of 1 control bit It defines whether a read or write cycle is in progress.

Foutth field of 1 control bit Next bit defines whether the present data is an acknowledgement (from the slave)

Fifth field of 8 bits 1t is used for IC device data bits.

Sixth field of 1-bit It is a negative acknowledgement bit (NACK) from the master. If active, then
acknowledgement after a transfer is not needed from the slave, else
acknowledgement is expected from the slave.

Sevdnth field of 1-bit It is a stop bit like in a UART.

disadvantage of this bus is the time taken by algorithm in the master hardware that analyses the bits
throukh I2C in case the slave hardware does not provide for the hardware that supports it. Some ICs support
the protocol and some do not. In that case, interface circuits for those ICs are also required. Also, there are
open [collector drivers at the master. Therefore, a pull-up resistance of 2.2 K or an active circuit for pull up of
line tp logic 1 for on each line is essential.

12Clis a serial bus for interconnecting ICs. It has a start bit and a stop bit like ina UART. It has seven fields
fdr fhe start, 7-bit address, defining a read or write, defining a byte as an acknowledging byte, data byte,
ALK and end. ,

3.10.2 CAN Bus

N ¢ of devices and controllers are located and are distributed in a car. An automobile uses number of
distributed embedded controllers, including those for the brakes, engine, electric power, lamps, inside
temperature control, air-conditioning, gate, front dash board display, meter display panel and cruising control.
Embedded controllers must network through a bus. CAN (controller area network) bus is a standard bus in
distributed network. It is mainly used in automotive electronics. It is also used medical electronics and industrial
planq controllers.

Data 2 !
3
SDA 8
3| Data | | Clook| EG
B wd
g § Clock
SCL ar
Clock gg
Data ,5"(5
(a)
1 ‘T 8T —= 8T ——
-~ T ——————
Slave Address
Start Bit
l::] Start Address Bit l:l NACK Bit
PEXXXXXA] Read/Write
%f;f;f*f;f@ Indicating Bit - Stop Bit
[Acknowledgement
i e

(b)

Fig. 3.10 (a) Signals during a transfer of a byte when using the IC (Inter Integrated Circuit) bus

(b) Format of SDA bits at the 12C bus

The CAN Bus [Figure 3.11(a)] network has a serial line, which is bi-directional. CAN bus has multinhaster
and multicast features. A CAN device using CAN controller receives or sends a bit at any instance by operating
at the maximum rate of 1 Mbps (bit-period = 1 ps). It employs a twisted pair connection of 120 ohm line
impedence at each controller node. The pair can run up to a maximum length of 40 m.

1.

2.

CAN serial line is pulled to logic level 1 by a resistor (active or passive) between the line and +4.5 V
to +12.3 V. Line is at logic 1 in its idle state, also called the recessive state.

Each node has a buffer-gate between an input pin and a CAN serial line. A node gets the input 4t any
instance from the line after sensing that instant when the line is pulled down to 0. The latter is ¢alled
dominant state.
Each node has a current driver circuit between output pin and serial line. The node sends a bit t¢ line
by pulling the line 0 by its driver for a bit period. An NPN transistor is used current-driving trangistor,
the emitter of which also connects to the line ground and collector connects to the line. Using a driver
(consisting of a buffer inverter gate connected to base of the NPN transistor), the node can pull the line
to 0, which is otherwise at logic 1 in its idle state. This lets other nodes sense the input.
A node sends the data bits as a data frame. Data frames always start with 1 and always end with geven
0Os. Between two data frames, there are minimum three fields. Table 3.10 gives the details of each|field
in a CAN frame. Figure 3.11(b) shows the format of the bits in a CAN frame.

The CAN-bus line usually interconnects to a CAN controller between the line and host node. [A host
node is one that has controller for use as bus master.] The line gives input and gets output dpring
reception and transmission using physical and data link layers at host node. The CAN controller has a
BIU (bus interface unit consisting of buffer and driver), protocol controller, status-cum-control regigters,
receiver-buffer and message objects. These units connect the host node through host interface cifcuit.

Field and its leng”’.

T}ble 3.10 Each field in a CAN frame

and Communication Buses for Duvices Network

6. There is an arbitration method called CSMA/AMP (Carrier Sense Multiple Access with Arbitration
on Message Priority). A node stops transmitting on sensing a dominant bit, which indicates that another
node is transmitting.

Fanctwn

First field of 12 bits

Secand field of 6 bits
|
Thizd field of 0 to 64 bits

Fouwrth field (third if data
field has no bit present) is
of 1 bits

Fifth field of 2 bits

i

"Tlns is arb:trahon field, which contains the’ packet’s ll-b:t destmanon address
andRTRbn (Packet meansasemfbltssentonthebns) RTR stands for ‘Remote

 byte being sent is a data for the device or a request to the device. 11-bit address

identifies the device to which data is being sent or the request bcmg made When

- an RTR bit is at 1, it means this packet is for the device at- destinatign e
. thisbitisat0 (dommant state) 1t means thls packet isa request for

the device.
It is control field. The first bit is identifier extension. The second bit is always 1.

- The last 4 bits are code for data length..

Its length depends on the data length code in control ﬁeld

It is CRC {Cyclic Redtundancy Check) field with 15-bit CRC plus 1-bit
delimiter bit. The receiver node uses it to dewct £xrorS, if any, durmg the
transmission. iy :

First bit is ‘ACK slot’. The sender sends it as 1 and the receiver, which would
send back O in this slot when it detects error in reception. The sender, after

- sensing '0: in ‘the” ACK 'slot, retransmits the data frame.:The second bit is the

‘ACK delimiter’ bit. It signals the end of ACK field. If the transmitting node
does not receive any acknowledgemem of data frame within a specified time

slot, it should retransmit.. . . S
Thlsxstheend-ofthe-fmmespecﬁcanonandhasseven% e

Sixl‘» field of 7 bits

- g for bus arb:tratmn bits, control bxts for address and data }ength, data blts CRC check bxts,
gkppwiedgement: bmandemhng bn& « g ey bt i et g

).3 USB Bus

Universal Serial Bus (USB) is a bus between host system and number of interconnected peripheral devices. A
maxifnum 127 devices can connect to a host. It provides a fast (up to 12 Mbps) and as well as a low speed (up
to 1.3 Mbps) serial transmission and reception between host and serial devices. A USB host, which includes
controller for function as bus master can connect flash memory cards, pen-like memory devices, digital camera,
print¢r, mice, PocketPC and video games. Thre are three standards: USB 1.1(a low speed 1.5 Mbps 3 m
changel along with a high speed 12 Mbps, 25 m channel); USB 2.0 (high speed 480 Mbps 25 meter channel),
and wireless USB (high speed 480 Mbps 3 m).

USB protocol has this feature—a USB device can be hot plugged (attached), configured and used, reset,
recorffigured and used; it can share bandwidth with other devices, detached (while others are in operation)

Embedded Embedded Embedded
controller system B controlier system C controller system D controller systemE -
(engine controller) (antilock brake controller) (dash board) (transmission)
(a)
I Start bit R to D transition (M 15-bit CRC, 1-bit delimiter

12-bit arbitration field (11-bit identifier plus RTR bit) FEEEEH 1-bit ACK slot, 1-bit delimiter
i 6-bit control field 7 bits 0000000 for frame-end

I 0- 54 bits data length code 1 3-bit minimum inter frame gap
State 4
Data frame (standard 11-bit identifier case Next Frame
R (Recessive) b B [E
D (Dominant) ‘ Tme

(b)

Fig. 3.11 (a) Network during a transfer of data when using the CAN (Controller Area Nethork)
bus (b) Format of the bits at CAN bus

i

and reattached. Attaching and detaching can be done without rebooting. The host schedules sharing of
bandwidth among the attached devices. A USB device can either be bus-powered or self-powered. In addition,
there is a power management by software at host for USB ports.

USB host connects to devices or nodes using USB port-drving software and the host controller conngcted
to a root hub. A hub is one that connects to other nodes or hubs. A tree-like topology forms as follows} The
root hub connects to the hub and node at level 1. A hub at level 1 connects to the hub and node at level 2 and
so on. Only the nodes are present at the last level. The root hub and each hub at a level connect in 4 star
topology with the next level. The USB device descriptor data structure has a hierarchy, which is as follows: It
has device descriptor at the root that has number of configuration descriptors and each configuration descgiptor
has number of interface descriptors and which has number of end point descriptors.

USB bus cable has four wires, one for +5 V, two for twisted pairs and one for ground. There are termination
impedances at each end that are as per the device speed. Electromagnetic Interference (EMI)-shielded cable is
used for 15 Mbps USB devices. '

Serial signals are Non Return to Zero ((NRZI) and the clock is encoded by inserting a synchronous|céde
(SYNC) field before each packet. [Refer to Table 3.2]. The receiver synchronizes its bit recovery ¢lock
continuously. The data transfer is of four types: (a) Controlled data transfer (b) Bulk data transfer (c) In
driven data transfer (d) Isosynchronous transfer.

ys and Communication Buses for Devices Network '

deviceiend-point number. The device does the handshaking through a handshake packet, indicating successful
or unstccessful transmission. A CRC field in a data packet enables transmission error detection at the receiver.
supports three types of pipes—(a) ‘Stream’ with no USB-defined protocol. It is used when the
connegtion is already established and the data flow starts. (b) ‘Default Control’ for providing access.
essage’ for the control functions of the device. The host configures each pipe for the followings:
(a) data bandwidth to be used, (b) transfer service type and (c) buffer sizes.

less USB is wireless extension of USB 2.0 and it operates at UWB (ultra wide band) 3.1 to 10.6 GHz
frequepcies. It is vzcu for short-range personal area network (high speed 480 Mbps, 3 m or 110 Mbps, 10 m
channel). FCC nas recommended a host wire adapter (HWA) and a device wire adapter (DWA), which provide
wireless USB solutions. Wireless USB also supports dual-role devices (DRDs). A device can be a USB
devicd as well as a limited capability host. For example, a wireless USB digital camera uses a USB host when
connetted to a printer and a USB device when connected to a personal computer. A wireless USB device is
used tp provide Internet connectivity between laptop or computer and mobile service provider network.

USB is a serial bus that interconnects a system. It attaches and detaches a device from the network. It uses a
root hub. Nodes containing the devices can be organized like a tree structure. It is mostly used in networking
the ID devices like scanner in a computer system. Wireless USB is used for remote connections without wires.

3.1q.4 FireWire — IEEE 1394 Bus Standard

Digitdl video cameras, digital camcorders, digital video disk (DVD), set-top boxes, and music systems
multimedia peripherals, latest hard disk drives, and printers need a high-speed bus standard interface for
communicating directly to a personal computer. FireWire (IEEE 1394b) is a standard for 800 Mbps serial
isosynichronous data transfers.

A FireWire IEEE 1394 port can operate at up to 400 Mbps and the latest machines include FireWire ports
that sppport IEEE 1394b which operate at up to 800 Mbps. Since FireWire can transfer data at a guaranteed
rate, it is also used in real time devices, such as video device data transfers.

A single 1394 port can interface up to 63 external FireWire devices. It supports both plug and play and hot
pluggjng. It also provides self-powered and bus-powered support on the bus.

3.1 i.S Advanced Serial High Speed Buses

Sectién 3.2.6 described SDIO, which is an advanced high-speed serial bus for handheld devices. An embedded
system may need to connect multi gigabits per second (Gbps) transceiver (transmit and receive) serial interfaces.
Exenplary products are wireless LAN, Gigabit Ethernet, SONET (OC-48, OC-192, OC-768). The following
are examples of the advanced bus protocols.
1} IEEE 802.3-2000[1 Gbps bandwidth Gigabit Ethenet MAC (Media Access Control)] for 125 MHz performance
IEE P802.30e draft 4.1 [10 Gbps Ethernet MAC] for 156.25 MHz dual direction performance]
IEE P802.30e draft 4.1 [12.5 Gbps Ethernet MAC] for four channel 3.125 Gbps per channel transceiver
performance]
XAUI (10 Gigabit Attachment Unit)
. XSBI (10 Gigabit Serial Bus Interchange)
. SONET OC-48

. SONET OC-192

. SONET OC-768
9. ATM OC-12/46/192

~'3.11 PARALLEL BUS DEVICE PROTOCOLS— PARALLEL COMMUNICATION
NETWORK USING ISA, PCI, PCI-X AND ADVANCED BUSES

A computer system connects at high speed to other subsystems having a range of 10 devices at very| short
distances (<25 cm) using a parallel bus without having to implement a specific interface for each 10 device.
When the 10 devices in the distributed embedded subsystems are networked, all can communicate t ugh a
common parallel bus. A parallel bus has a large number of lines as per the protocol. Figures 3.12(a) and (b)
show the processor of an embedded system A connected to system memory bus and networked to| other
subsystems through a parallel bus PCI using PCI bridge and AMBA-APB bridge, respectively.

RAM - .ROM
Fe ﬁ

Processor of | | , —
systemA | - ; __ Databas |
1L 101
Control bas
1
PCI Bridge/Memory controller |
1.1
" PClbus

][
LAN Interface Ll [Grapmc Inteffac‘e_‘ LIO Device Inlerfa‘_J 10 Expanswn |nterface|

fJ i Gmphic [_s)cm Controller | |o controller |
- With'LCD
monitor or CRT Expansion bus
@ 10 Device|
| RAM] | ROM] ——
igh spee
ARM jj l{; j] E Melzmory bus
system ; AMBA-AHB bus {
]]
T AMBA- AMBA- LL——-—-' AMBA—APBbus ’_L: Low
" APB - APB Speed

Bridge Bridge APB bus 'i’ 10

Dewoel iIOD

Fig. 3.12 (a) and (b) A processor of embedded system connected to system i..emory| bus
and networked to other subsystems through a parallel bus using PCl and AMBA:APB
bridges

We need an interconnection bus within PC or embedded system to a number of PC-based IO cards, systems
and devices. This bus needs to be separated from system-bus that connects the processor to memories| The

yig §s and Communication Buses for Devices Network

systen) bus and interconnection bus operate at different levels of speeds. Exemplary devices are display
monitgr, printer, character devices, network subsystems, video card, modem card, hard disk controller, thin
client,|digital video capture card, streaming displays, 10/100 Base T card and card using DEC 21040 PCI
Ethernet LAN controller. Each of these devices, which performs a specific function, may contain a processor
and drives by software. Each device has specific memory address-range, specific interrupt-vectors (pre-assigned
or autd configured) and device IO port addresses. A bus of appropriate specifications and protocol interfaces
these ;Phost system or computer.

A switch, popularly called PCI bus interface, switches a processor communication with the memory bus to
PCI bys. In most systems, the processor has a single data bus that connects to a switch module such as the PCI
bridge found in many PC systems, although some processors integrate the switch module onto the same
integrdted circuit as the processor to reduce the number of chips required to build a system thereby reducing
the sy#tem cost. The switch communicates with the memory through memory bus and dedicated set of wires
that transfer data between these systems. A separate 1O bus connects the switch to 10 devices. Separate
memo’)’y and IO buses are used because the IO system is generally designed for maximum flexibility, to allow
as many different IO devices as possible to interface to the computer, while the memory bus is designed to
provide the maximum possible bandwidth between the processor and memory system.

Twb old interconnection buses for communication between the host and a device are ISA and EISA (Extended
ISA). |A new interconnection for the bus is either PCI or PCI/X. [A variant of it is Compact PCI (cPCI).]
Sectiops 3.12.1 to 3.12.4 describe three parallel bus communication protocols.

, 1 bus interconnects IO devices and peripherals over very short distances and at high speed. ISA, PCI
and ARM buses are examples of paralle] buses. A parallel bus interfaces the system memory bus through
fve or switching circuit. ’ C S fe e o

or 80286 processor, and in which the processor addressing and IBM PC architecture addressing limitations
and infterrupt vector address assignments are taken into account. There is no geographical addressing.

The limitation for memory access by a system using the ISA bus of the original IBM PC were as follows:
ISA bus memory accesses can be in two ranges, 640 to 1 MB and 15 to 16 MB. The former range also
overlgps with the range used by video boards and BIOS. [Note: Linux OS does not support the second range
for acessing directly a device.]

The 10 port address limitations for devices are as follows: The 8086 to 80286 processor has 10 mapped
10s, npt memory mapped IOs. Though the instru-:.un set provides for 10 instructions for 64 kB IO addresses,
the IAM PC configuration ignores the address lines A yto A,s and these are not decoded. Therefore, only
1024 O port addresses are available. A hexadecimal addressing scheme with three nibble addressing between
000 t¢ 3FF only can be used for a device. The A,j to A s bits are thus immaterial. The following are the
addregses allocated in IBM Standard Architecture (ISA).

1] Addresses allocated are 0x000—0x00F for DMA chip 8237. The addresses for other devices are as follows.
21 0x020-0x021 addresses allocated are for programmable interrupt controller 8255. Hex 0x040-0x043
for timer 8253.

3, 0x060-0x063 for parallel port programmable parallel interface.

4} The hexa-decimal addresses 080-083, 0AQ-0AF, 0C0-0CF, OEO-OEF allocated are for components on
the motherboard.

Embedded tems

Reserved addresses from peripherals are hex 220-24F, 278-27F, 2F0-2F7, 3C0-3CF and 3EQ ito 3F0.
The addresses allocated are hex 2F8-2FF and 3F8-3FF for IBM COM ports. !
Addresses are hex. 320-32F and 3F0-3F7 for hard disk and floppy diskette, respectively.
Only 32 addresses between 0x300 to 0x31F are available for prototype card; for example,
Addresses allocated are between hex 380-389 and 3A0-3A9 for synchronous communicati

10. Synchronous Data Link Control (SDLC) addresses allocated are between hex. 380-38C.

11. Display monitor ports are within 380-38F (monochrome) and 3D0-3DF for (colour and graphics).

There is a limited availability of interrupt vectors in the IBM PC 80x86 family. Only 256 vec s are
available. Interrupt service functions are now shared at software level: for example, SWT interrupts.
ISA specifications did not allow that.

EISA bus is a 32-bit data and address-lines version of ISA, and devices (system using this bus for IOs) are
also supported. An EISA device driver first checks the EISA bus availability on the hosting computer or
system. It supports the sharing of interrupt functions, SCI (Serial Communication Interface) controller and
Ethernet devices. Unix and Linux support the EISA bus-driven cards and devices.

card.

O XN

ISA and EISA buses are compatible with IBM architecture. They are used for connecting devices foll Wing
IO addresses and interrupt vectors as per IBM PC architecture. EISA is 32-bit extension of ISA also
supports software interrupt functions-and Ethernet devices. :

3.11.2 PCl and PCI/X Buses

Recently, the most used synchronous parallel bus in the computer system for interfacing PC-based deyices is
PCI (Peripheral Component Interconnect). PCI provides a superior throughput than EISA. It is almost platform-
independent, unlike the ISA, which depended on the IBM PC platform, interrupt vectors, IO addres
memory allocations. Its clock rate is nearest to the submultiple of the system clock. PCI provides
of synchronous parallel interfaces. Its versions are 32/33 MHz, 64/66 MHz, PCI-X 64/100 MHz,
V2.3264/528 MBps 3.3 V (on a 64-bit bus), 132/264 (on a 32-bit bus) and PCI-X Super V1.01a for 8 MBps
64-bit bus 3.3 V. .

PCI bus has 32-bit data bus extendible to 64 bits. In addition, it has 32-bit addresses extendible to $4 bits.
Its protocol specifies the interaction between the different components of a computer. A specification is
version 2.1. Its synchronous/asynchronous throughput is up to 132/ 528 MB/s [33 M x 4/ 66 M x 8]i?e/s]. It

operates on 3.3 V signals. A typical application is an exemplary PCI Card has a 16 MB Flash ROM with a
router gateway for a LAN.

A PCl driver can access hardware automatically as well as by addresses assigned by the programmer The
PCI feature of automatically detecting the interfacing systems and assigning new addresses is important for
coding a device driver. The PCI bus therefore simplifies the addition and deletion (attachment and detachment)
of the system peripherals. A manufacturer registers a global number for PCI device or card, just as, 68BHC11
or 80386 are globally registered numbers. A 16-bit register in PCI device identifies this number to Jet that
device auto-detected. Another 16-bit register is for a device ID number. These two numbers allow the|device
to carry out auto-detection by its host computer. Each device may use FIFO controller with FIFO buffer for

‘maximum throughput.

A device or host identifies its address space by three identification numbers (i) IO port, (ii) memory logations
and (iii) configuration registers of total 256 B with a 4-byte unique ID. Each PCI device has addres$ space
allocation of 256 bytes to access it by the host computer. The unique feature of PCI bus is its configpiration
address space. A uniquely assigned interrupt type (a number) handles an interrupt. For example, injterrupt
type 3 has the interrupt vector address 0x0000C and four bytes at the address specify the interrupt pervice

s and Communication Buses for Devices Network

routifle address. Interrupt type can be between 0x00 and OxFF. A configuration register number 60 stores the
e for the interrupt type n(pci) . The PCI device or host when interrupted handles the interrupt of type
i). Figure 3.13 shows 64-byte standard configuration registers in a PCI device. Following are the
iations used in the figure.

Regigter. CL: Cache Line. LT: Latency Timer. BIST: Base Input Tick. HT: Header Type. BA: Base Address.
CBCJSB: Card Base CIS Pointer. SS: Sub System. ExpROM: Expansion ROM. MIN_GNT: Minimum

VID, DID, RID, CR,_SR, and HT are compulsorily configured. The rest are optional.

, /Min_GNT

<_Ext:3 :OL ~—— Resorved ——— m%? QT 'éﬁ’%‘ 0x30
<« BAy — -« BAs —» - CBCISP — SSVID SSDID | 0x20
~ BAy —- <« BA; — -« BA, —- -« BA; — |0x10
viD DID CR SR RID | < CC > [CL| LT | HT | BIST | 0x00
Ox0 OxI OxF

Figi3.13 64 bytes at standard device independent configuration registers in a PCl device or host
A PCI controller must access one device at a time. Thus, all the devices within host computer can share 10

port addresses and memory locations but cannot share the configuration registers. That means that a device
cannbot modify other configuration registers but can access other device resources or share the work or assist
the ather device. If there are reasons for it doing so, a PCI driver can change the default bootup assignments
on cpnfiguration transactions.

device can initialize at booting time. This helps in avoiding any address collision. A PCI device on
bootlip disables its interrupt. Its address space is inaccessible and only the configuration registers space remains
accessible. PCI BIOS with the device performs the configuration transactions and then memory and address
spaces automatically map to the address space in host computer.

[parallel bus is popular in distributed embedded devices. PCI and PCI/X buses are used for parallel bus
qopimunication and these are independent from the IBM architecture. PCI/X is an extension of PCI and
supports 64/100 MHz transfers. PCI bus new version support 132/528 MB/s data transfer with synchronous/
dsynchronous throughputs.

3.11.3 ARM Bus

ARM processor interfaces the memory, external DRAM (dynamic RAM controller and on-chip IO devices,

whith connect to 32-bit data and 32-bit address line at high speed using AMBA (ARM Main Memory Bus

Architecture)-AHB (ARM High Performance Bus). Figure 3.12(b) shows AMBA-AHB and AMBA-APB

bridges. The bridges interface the memory and external-chip IO devices, which operate at low speed using
A-APB. The maximum AHB bps bandwidth is sixteen times the ARM processor clock.

o

A switch, popularly called the AMBA-APB bridge, switches ARM CPU communication with the AMBA
bus to APB bus. The ARM processor-based microcontroller has a single data bus in AMBA-AHB that cohnects
to the bridge, which integrates the bridge onto the same integrated circuit as the processor to reduge the
number of chips required to build a system. This reduces the system cost. The bridge communicates with the
memory through an AMBA-AHB, a dedicated set of wires that transfer data between these two systens. A
separate APB IO bus connects the bridge to the IO devices. Separate AMBA-AHB and APB IO buses are
used because the IO system is generally designed for maximum flexibility, to allow as many differgnt 10
devices as possible to interface to the computer, while the memory bus is designed to provide the maxjmum
possible bandwidth between the processor and the memory system. #

required

The APB can connect the I’C, touchscreen, SDIO, MMC (multimedia card), USB, CAN and other
interfaces to an ARM microcontroller. ‘

ARM bus is of two types: AMBA-AHB and AMBA-APB. AHB connects to high speed memory 1Al
connects the external peripherals to the system memory bus through a bridge. . i

3.11.4 Advanced Parallel High Speed Buses

Many telecommunication, computer and embedded processor-based products need parallel buses for system
IOs. Three versions of PCI parallel synchronous/asynchronous buses provide system-synchronous parallel
interfaces. These three versions may not have sufficiently high speed, ultra high speed and large bandwidth that
are required for system IOs, routers, LANs, switches and gateways, SANs (Storage Area Networks), WANs
(Wide Area Networks) and other products. These do not meet the source-synchronous parallel interfaging
requirements. Bandwidth needs increase exponentially in the order of audio, graphics, video, interactive video
and broadband IPv6 Internet. An embedded system may need to connect IO system using gigabit pdrallel
synchronous interfaces. The following are advanced bus standard and proprietary protocols developed recently.
1. GMII (Gigabit Ethernet MAC Interchange Interface).
2. XGMI (10 Gigabit Ethernet MAC Interchange Interface)
3. CSIX-1. 6.6 Gbps 32-bit HSTL with 200 MHz performance.
4. RapidlO™ Interconnect Specification v1.1 at 8 Gbps with 500 MBps performance or 250 MH2 dual
direction registering performance using 8-bit LVDS (Low Voltage Data Bus).

- 3;12 INTERNET ENABLED SYSTEMS—NETWORK PROTOCOLS

Figure 3.14 shows an Internet-enabled embedded system communicating to other systems on the Intérnet.
Internet-enabled embedded systems use html or MIME type files (Section 3.12.1), TCP (Section 3.12{2) or
UDP (Section 3.12.3) transport layer protocol, and are addressed by an IP address (Section 3.12.4) and yse IP
protocol at network layer. An IP address is of 32 bits (four decimal numbers seperated by dots in betwegn) or
48 bits in IPv4 or IPv6 respectively. IPv4 means IP protocol version 4 and IPv6 means version 6. A system 3t one
IP address 1 communicates with another system at another IP address 2 or 3 or... using the physical connedtions
on the Internet and the routers. Since the Internet is a global network, the system connects to remotely locafed as
well as short range located system. Network connectivity is through the layers. Each layer has a protocol, hich
specifies the way in which the data or message from the previous layer transfers to the next layer. "

There are five layers in a TCP/IP network. They are the application, transport, network, data-link and
physical layers. The TCP/IP application layer protocol also specifies presentation ways. Transport layer pratocol
specifies session establishment and termination ways also.

Sections 3.12.1 to 3.12.5 describe the TCP/IP suite’s five most used protocols.

Dé«f #s and Communication Buses for Devices Network

Elﬁ ded systems are Internet enabled by using TCP/IP pmtocol suite protocols for networking to Internet
signing the IP addresses to each system.

and

171

IP address 1

Internet enabled - htmi or MIME type file transfer using TCP or UDP transport layer protoco!
3 .Embedded . Packets

controller system - Network interface

: L]

’ TCP/IP network |
1 L L[_ L.
i Network Interface Network Interface " Network Interface Network interface -

| [

|

1

]

" Intemet enabled
- embedded system

- internet enabled

embedded system

embedded system

Internet enabled

Rémo‘te Computer

IP address 2

IP address 3

IP address 4

IP address 5

Figi 3.14 An Internet enabled embedded system communication connected on the Internet

3.12.1 Hyper-Text Transfer Protocol (HTTP)

An a

lication layer protocol is as per the application. This layer accepts the data, for example, in HTML or

text fdrmat and puts the header words as per the protocol and sends the application layer header plus data to

the tr
layer

10

11)
12,

A
and p

1.
2., MIME enables attachment of multiple types of files. The examples are:

bW

OX o

sport layer. A port number specifies the application in the header. Following are the important application
brotocols that support TCP/IP networking.
NTP (Network Time Protocol) synchronizes system clocks on a network.

o txt (text file),

e doc (MSOFFICE Word document file),

o gif (graphic image format file),

¢ jpg (jpg format image file), and

e wav voice or music file.

HTTP (Port 80) enables Internet connectivity by Hyper-Text Transfer Protocol (HTTP).

FTP (Port 21 for control, 20 for data) enables file transfer connectivity by File Transfer Protocol.

TFTP (Port 69) for Trivial FTP. NFS (Network File System) is used for sharing files on a network.

TELNET (Port 23) enables remote login to remote terminals by Terminal Access Protocol.

SMTP (Port 25) enables e-mail transfer, store and forward by Simple Mail Transfer Protocol.

PoP3 (Port 110) enables e-mail retrieval.

NNTP (Port 119) (Network News Transfer Protocol) is used for news transfer port.

DNS (Port 53) for Domain Name Service.

| SNMP (Port 161) Simple, Network, Management Protocol.

Bootps and Bootpc (Ports 67 and 68) for Bootstrap Protocol (DHCP) Server and Client, respectlvely

DHCP (Dynamic Host Configuration Protocol) used for remote booting as well as for configuring a
i system. .

fort -assigned number- supports multiple logical connections using a socket. Each socket has IP address
rt number. A registered port number can be between 0 and 1023. Registration is done by IANA (Internet

Assigned Number Authority. Port number 0 means host itself. A user unregistered server can have Port
number above 5000.
HTTP port 80 is an application layer protocol. The HTTP features are as follows:

1.

HTTP is standard protocol for requesting for a URL (universal resource locator) address, for example,
http://www.mcgraw-hill.com.) An URL defines a web page resource, and is used for retrieving or
sending web page file. The response from web may be with or without applying a process. An HTTP
client requests an HTTP server on the Internet and the server responds by sending a response.
HTTP is a stateless protocol. For an HTTP request, the protocol assumes a fresh request. It means
there is no session or sequence number field or no field that is retained in the next exchange} This
makes a current exchange by an HTTP request independent of the previous exchanges. The later
exchanges do not depend on the current one. An e-commerce-like application needs a state manag¢ment
mechanism. A Cookie is a text file created during a particular pair of exchanges of HTTP request and
response. The creation is either at CGI or processing program or script or at client (Browser). A prior
exchange may then depend on this cookie. By this mechanism, the stateless feature of HI[TP is
compensated. The cookie provides a HTTP state management mechanism.
HTTP is a file transfer-like protocol for HTML (hyper text markup language) files. This makes it easy to
explore a web site URL. A request (from a client) is sent and reply (response from a server) is received.
The HTTP protocol is very light (a small format) and thus speedy as compared to other existing
protocols. HTTP is able to transfer any type of data to a browser (a client) provided it is capable of
handling that data.

. Besides simplicity, another important feature of HTTP is its flexibility. Assume we are surfing thg web

and our connection breaks (or user does so); then too we can start surfing on the Net from just that
point again. Being a stateless protocol, HTTP does not keep track of the state as FTP does. Each time
a connection establishes between the web server and the client (browser), both these interprét this
connection as a new connection. Simplicity is a must because a web page has its URL resqurces
distributed over a number of servers.
HTTP protocol is based on the Object Oriented Programming System (OOPS). Methods are applied
to objects identified by URL. It means that as in the normal case of Object Oriented Progrmi\, the
various methods apply on an object.
From HTTP 1.0 and 1.1 version onwards, the following features have been included:
(a) Multimedia file access is feasible due to provision or the MIME (Multipurpose Internet] Mail
Extension) type file definition.
(b) From HTTP 1.1 version onwards, there are eight specified methods and extension methods. An
extension method is method added for a specific HTTP. There can be none or one or s¢veral
extension methods. The HTTP specific methods are as follows. 1. GET 2. POST. 3. HEAD 4.
CONNECT. 5. PUT 6. DELETE 7. TRACE. 8. OPTIONS. (Last four from 1.1). In earlier verpions,
GET follows a space and then document name. Server returns the documents and closg¢s the
connection. From 1.1, the POST method has permitted form processing, as using it the client
transmits the form data or other information to the server. From 1.1, the server does not close the
connection after response and thus response can be processed before it is sent.
(c) A provision of user authentication exists besides the basic authentication introduced from HTTP
1.1 version onwards, Digest Access Authentication prevents the transmission of usernamg and
password as HTML or text.
(d) A host header field adds to support those ports and virtual hosts that do not accept or send IP
packets. From HTTP 1.1 version onwards, An error report to client when a HTTP request is
without a host header field.

8.

9.

10.

3.12

TCP
upper
netwa
headd
additi
manaj
Th
suppa
Td

Dem*es and Communication Buses for Devices Network

(e) From HTTP 1.1 version onwards, an absolute URL is acceptable to the server. Earlier only proxy
server accepted that.

(f) Status codes in the response.

(g) Caching of a resource is provided at server (and proxy).
(h) Byte range specification helps in large response in parts.

(i) Selection among various characteristics on retrieval by the client is feasible when a server sends
response to client request. For example, two characteristics, language and encoding can be specified
in server environment variables while the client sends request header for retrieving a resource.
The resource then retrieves in that language and with that encoding. The contents sent to client

; do not change, only the way in which these are presented to the client change.

} (j) Length specification helps in presentation in chunks.

; An HTTP message header during a request from a client or during a response from server consists of

‘ two parts (a) A start-line, none or several message- headers (fields) and empty line, and (b) Body of

| message. HTTP specifies that request message to consist of request message headers. HTTP also
specifies that response message to consist of response message headers.

HTTP provides for entity headers. These contain information about entity body contained in the message,

| or in case body is not present then information about the entity, not its body. For example, information

% of content length in bytes.

HTTP interaction scheme is that a client requests server directly or through proxy or a gateway. An

HTTP message is therefore either request or response. The format of the messages called RFC 822,

specifies ways of sending text messages on the Internet. The message during request from client or

during response from server consists of two parts, (a) Start-line, none or several message-headers

(fields) plus empty line, and (b) Body of the message. The start line is either a ‘request-line’ or ‘status-

line’ for request-or response-message, respectively.

.2 Transport Control Protocol (TCP)

Transport Control Protocol) is a protocol used in transport layer. This layer accepts messages from the
layer on transmission by application or session layer. This layer also accepts a data stream from the
irk layer at receiving end. Before communicating a message to the next network layer, it may add a
. The message may communicate in parts or segments or fragments. The header generally has the
onal bits for source and destination addresses. Also, there are bits in it for the sequence and acknowledge
bement, flow and error controls, etc.

ere are bits for the offset, window, flags, checksum, urgent pointer, option and for padding also. TCP
rts the point to point networking mode. '

IP specifies a format of byte streams at the transport layer of the TCP/IP suite. TCP is used for a full

duplek acknowledged flow. Its format has a TCP header of five plus (n—5) words for options and padding and

data

f maximum | words. Then, 1 >2!4 — n. Here n 2 5. n equals the number of words in the header and is

called data offset, which means the number of words after which data bits start in the stream. If n >5, it means
there gxists words for options and padding. Padding refers to bits used for filling the remaining part of the
availdble field. For example, the option field may indicate the application to be run by the destined node. An

ackn

ledged flow means that the messages communicate in a point-to-point network mode and that there is

an acknowledgment for first establishing a connection. Full duplex means that at a given instance, messages
go to and fro from sender to receiver, and that the receiver acknowledges receipt. A request and its response

do no'}

form a separate transmission. TCP is virtual-connection oriented. It does not permit multicasting but

pointito-point virtual connection.

174 | : ‘ Embedded Sy*ms

3.12.3 User Datagram Piotocoi (UDP)
TCP/IP also supports at the transport layer a simpler protocol than TCP. When a message is connectionless and
stateless, then the transport layer protocol in the TCP/IP suite is User Datagram Protocol (UDP). UDP s:iports
the broadcast networking mode. An example is application for communicating header before a data streamy. The
header specifies the bits for source and destination ports, total length of message including header and check sum
(optional). During reception, this message to upper layer flows after deleting the header bits from the redeived
transport layer header. Header bits add at the transmitting time in the application or session layer bytes.

3.12.4 ineinet Prococol (iP)
All Internet enabled devices communicate using Internet protocol (IP). The transport layer data transmits on
the network, divides into the packets at the network layer. Each packet transmits through a chain of routers on
the Internet. A acket is minimum unit of data that transmits on the Internet through routers. Several pacets
forming a source can reach a destination using different routes and can have different delays. The gacket
consists of IP header plus data or IP header plus routing protocol along with the routing messages. The gacket
has a maximum of 2!®bytes (2!4 words, 1 word = 32 bits = 4 bytes).

Network routing is as per standard IPv4 (version 4) or IPv6 (version 6). IPv6 is a broadband protocol.
Table 3.11 lists the fields in IPv4 protocol header.

Taae 3.11 Various fields at IPv4 header for routing the packets through routers to
destination node

i - L L

Precedance) Pnecedence type is between 810 10" bit. Bits i spec1fies highest precedence. For
example for streamxng audlo or vxdeo 000 specrﬁes common data S

i Field at the IP header Explanation

g Version IP version bits are 0100 for IPv4 (presently in wide use) and 0110 for IPv6 (IPng IP
i next genration for broadband Intemet) . s
!

]

i

l

Servwe Servrce type is between ll“‘ to 15“‘ bit. : ,
: QoS (Quality of Service) 'B1ts are for QoS (Quahty of Servrce) specrﬂcanon in terms of securrty, speed, delays
: -and cost desired or must be achieved. : .

‘s » | .
! Fragment ID .. Each message may . have many packets fragmented through the routers. Each fr
must thus- provide-a unique ID. for 1dentrﬁcat10n for re-assembly at the. receiver

FIags Flags indicate whether present fragment is last one, whether fragmen
permitted and whether more fragments will follow. Let ¢-= Number of header

(1 word =32-bit). Flag bit indicates whether more fragments of the packet will SI)d:eéd.
this fragment. Flag bit 2 identifies it as a test fragment or not. Flag bit 3 checks whether
the fragmentation is permn:ted or not.. . :

!
}
!
1 1
4 Checksum Header checksum checks errors it header transmission. . . - f

Time-to-live . Time to live indicates number of retransmission hops perrmtted in case of failed deli dy

| Protocol type. . . - _'l'ype mdrcates whether the packe{ is transrmttmg a UDP byte stream or a TCP s
R - from u'ansport ldayet.- The important routmg protocols that encapsulate after
header inan IP packet are; '

es and Communication Buses for. Devices Network o - 175'!

Fleld at the IP header Explanation

IGMP (Internet Group Management Protocol). IGMP is a protocol to manage data
transmission between select host groups. Several hosts j Jom a group. Group multicasts
use routers that uses the IGMP.

ICMP (Internet Control: Management Protocol) ICMP isa protocol to control routing

between networked hosts. _

ICMP data byte stream is inside an IP. packet (datagram). Its format is -as follows. First |

20 bytes minimum are the IP header. Next follows the fields of 1-byte each for Type

and Code, successively. Next-two bytes are. for Checksum. Then follows thc ICMP
. messages the format and length of which is variable.

' Interior routing protocols for exampie the RIP (Routmg Infoxmauon Pmtocol) and
OSPF .(Open ‘Shortest Path Fn'st) protocol. . - ,

Inter-Domain (exterior routing): protocols, for example, EGP (Extenor Gateway
Protocol), BGP (Border Gateway Protocol) and GGP (Gateway to Gateway]

Healler length The IP header length (data offset) p < 2!4 — q. Here q 2 5. q equals the m e
(-offset) in the header and is called the data offset [Number of words after which)tz blt._s start
in the stream.]
Soutce and Destination IP Source and destination IP addresses If q >5, there exist words for optlons
ses options and padding. Padding refers to bits that are used for filling the remaining part of the
available field. For example, option 4 will mean put time stamp at all the stoppages of

i the packet during transit to destination through routers. Time stamping enables packet
i delay measurements to calculate Network Performance Quality.
| .

3.12.5 Ethernet

The inventor of Ethernet LAN is Robert Metcalfe. At present, about one third of the LANs in the world are the
Ethernet LANS, and in each frame, there is a header like in a packet. In Ethernet LAN standard is IEEE 802.2
(ISO|8802.2). It is a protocol for local network of computers, workstation and devices. LAN is used for
sharing local computers, systems and local resources such as printers, hard disk space, software and data.
Tabld 3.12 gives the features of the Ehernet LAN devices.

Data for transmission fragments into the frames. Each frame has a header. Firstly, the header has eight
bytes} which defines a preamble. The preamble indicates the start of a frame and is used for synchronization.
Thenithe header has six bytes of destination address. Six bytes of source address then follows the destination
addrdss. Then there are six bytes. These are for the type field. These are meaningful only for the higher
netwerk layers and the length definition. The minimum 72 bytes and maximum 1500 bytes of data follow the
length definition. Lastly, there are 4 bytes for CRC check for the frame sequence check.

- @3 WIRELESS AND MOBILE SYSTEM PROTOCOLS

Figures 3.15(a), (b) and (c) show a handheld device or computer system connected to other handheld devices
or computer through IrDA, Bluetooth and ZigBee wireless protocols, respectively. Sections 3.13.1 to 3.13.4
descrjbe the IrDA, Bluetooth, WLAN (wireless LAN) 802.11 and ZigBee protocols.

Embedded Sy-#ems

Table 3.12 Ethernet LAN features

It listens and if the channel is idle then transmits. If not idle, waits and
again. Multi access is like in a packet switched network

Control Passive, connection-based

Address Resolution Protocol (ARP) Yes, There is a media access control (MAC) address for transmittin
for resolving 32-bits Internet protocol forwarding frames on the same LAN. We can also use multicast addry
addresses with the 48-bit destination to send frames to all or few select types of Ethernet devices.

host media address.

Connectivity to Internet and Intranet Yes, Outside a LAN the Internet Protocol addresses are sent.

N
Feature Ethernet LAN
Topology and transmission mode Bus
Speed 10 Mbps, 100 Mbps (unshielded and shielded wires) and 4 Gbps (in twisted
pair wiring mode)
Broadcast Medium Passive. Wired connections-based. Frame format like the IEEE 802.3.
SNMP (Simple Network Yes
Management Protocol)
System . Open (therefore allows equipment of different specifications)
Operation Each one connected to a common communication channel in the network.

tries

3.13.1 Infrared Data Association (IrDA)

Infrared (IR) is electromagnetic radiation of wavelength greater than visible red light. An infrared

ource

consists of a gallium-arsenic—phosphorus junction-based diode. An infrared receiver consists of a gaflium—
arsenic—phosphorus junction-based phototransistor, which conducts electric current when the IR bearn falls

on it and does not conduct when IR does not fall on it. The collector or drain has voltage close to 0 V'
conducts and is close to supply voltage when it does not conduct.

hen it

IrDA (Infrared Data Association) recommends a protocol suite as standard. It supports data transfef rates
of up to 4 Mbps. It supports bi-directional serial communication over viewing angle between +15° and distance

of nearly 1 m. At 5 m, the IR transfer data can be up to data transfer rates of 75 kbps. There should
obstructions or wall in between the source and receiver.

be no

Figure 3.15(a) shows a handheld device connected to other computer through using IrDA protocol. Pragtocol-

processing hardware device and the protocol software embeds in the system, which support line o
communication using infrared.

sight

IrDA supports 5 levels of communication. Level 1 is minimum required communication. Level 2 is access-

based communication. Level 3 is index-based communication. Level 4 is synchronized communig

ation.

Synchronization software, for example, ActiveSync or HotSync is used. Level 5 is SyncML (synchronigzation

markup language)-based communication. A SyncML protocol is used for device managemer
synchronization with server and client devices, which are connected by IrDA.

IrDA is used in mobile phones, digital cameras, keyboard, mouse, printers to communicate to
computer and for data and pictures download and synchronization. IrDA is also used for control T]

t and

aptop
V, air-

conditioning, LCD projector, VCD devices from a distance.
IrDA supports several protocols at three layers. Lower layer is physical layer 1.0 or 1.1. It suppo
transfer rates of 9.6 kbps to 115.2 kbps and 115.2 kbps to 4 Mbps in IrDA physical layer 1.0 and 1.1, res|

ot
ively.

s and Communication Buses for Devices Network v

"} IrDA protocol ‘—J - Computer in
+ E deviceed o IrDA intertace DA interface e o m::ea
) (a)
. Hluetooth protocol Cradle , - Computerin
© embedded S Serial
" device —— Emuater WU COM Port
’ l Btuetooﬂwpersonalareapmnetmm BIuetoohpafsmm!areaecatsrmﬁﬁam '
. —
Bluetooth protocol Bluetooth protocol
embedded device embedded device
embedded device
ZigBee protocol ZigBee protoco!
embedded device embedded device
— 1 N |
ZigBee protocol ZigBee protocol
embedded device @ embedded device
C,
Fig.3.15 (a), (b) and (c) A handheld device connected to other handheld devices or computer
through IrDA, Bluetooth and ZigBee wireless protocols, respectively

uppdr sublayer and IrLAP (IR link access protocol) lower sublayer. An IrLAP is HDLC synchronous
communication (Section 3.2.4).

An IrDA upper layer protocol is Tiny TP (transport protocol). Another upper layer protocol is I'ILMIAS (IR
Linkl Management Information Access Service Protocol). A transport layer protocol during transmission specifies
ways of flow control, segmentation of data and packetization. During reception, it assembles the segments and
packets. The upper layer protocol for the session layer is I'LAN, IrBus, I'MC, IrTran, IrOBEX (Object Exchange)
and ptandard serial port emulator protocol IrCOMM (IR communication). IrBus provides serial bus access to
game ports, joysticks, mice and keyboard. Application layer protocol is for security and application and as
specjfied by the IrDA. For example, IrDA Alliance Sync protocol is used to synchronize mobile devices personal
tion manager (PIM) data. It supports Object Push (PIM) or Binary File Transfer.
indows and other operating systems support IrDA protocol-based communication devices. An infrared

I:it‘ermediate layer is data-link layer. At data link layer, it specifies IlLMP (IR link management protocol)

A protocol overhead is between 2% to 50% of Bluetooth device overhead. The communication setup
latericy is just few milliseconds. The requirement of line of sight and unobstructed communication is the limitation.

3.13.2 Bluetooth

|
Bludtooth hardware is connected to embedded system buses and Bluetooth software embeds in the system to

support WPAN using Bluetooth wireless protocol. Figure 3.15(b) shows a handheld device connected to
i

: - Embedded Syl*lns

other computers through wireless protocol using Bluetooth. A large number of CD players and mobile dgvices
are Bluetooth-enabled. Bluetooth is also used for handsfree listening of Bluetooth-enabled iPod or CD music
player or mobile phone by using Bluetooth-enabled era buds.

Bluetooth is an IEEE standard 802.15.1 protocol. The physical layer radio communicates at carrier frequ¢ncies
in 2.4 GHz band with FHSS (frequency hopping spread spectrum). Hopping interval is 625 ps and nu of
hopped frequencies are 79. Data transfer is between two devices or between a device and multiple devicés.

It supports range up to 10 m low power and up to 100 m high power. Range depends on radio interface at
physical layer. Bluetooth 1.x data transfer rate supported is 1 Mbps. Bluetooth 2.0 has enhanced maxjmum
data rate of 3.0 Mbps over 100 m. Bluetooth protocol supports automatic self-discovery and self-organization
of network in number of devices. Bluetooth device self discovers nearby devices (<10 m) and they syncrh:tmize
and form a WPAN (wireless personal area network). Bluetooth protocol supports power control so that the
devices communicate at minimum required power level. This prevents drowning of signals by superimpostions
of high power signals with lower level signals.

The physical layer has three sublayers: radio, baseband and link manager or host controller intefface.
" There are two types of links: best effort traffic links and real-time voice traffic links. The real-time traffi¢ uses
reserved bandwidth. A packet is of about 350 bytes. The link manager sublayer manages the master and|slave
link. It specifies data encryption and device authentication handling, and formation of device pairs for Bludtooth
communication. It gives specifications for state transmission-mode, supervision, power level monitgring,
synchronization, and exchange of capability, packet flow latency, peak data rate, average data rate and maxjmum
burst size parameters from lower and higher layers.

The Host Controller Interface (HCI) interface is a hardware abstraction sublayer. It is used in place ¢f the
link manager sublayer. It provides for emulation of serial port, for example, 3-wire UART emulati n. A
Bluetooth device can thus interface to the COM port of a computer.

Its communication latency is 3s. It has large protocol stack overhead of 250 kB. Provision of encrypted
secure communication, self-discovery and self-organization and radio-based communication between tiny
antennae are three main features of Bluetooth.

3.13.3 802.11

Wireless LAN uses IEEE standards 802.11a to 802.11g. Data transfer rates are 1 and 2 Mbps. The 802.11b is
called wireless fidelity (WiFi). 802.11b support data rates of 5.5 Mbps by mapping 4 bits and 11 Mbps mapping
8 bits simultaneously during modulation. .
A given set of the LAN-station access-points network together and the set is called extended servige set
(ESS). It is a backbone distribution system. A backbone set may network through the Internet. ESS supports
fixed infrastructure network.

There are two types of wireless service sets.
1. One service set has one wireless station, which communicates to an access point, also called a hofspot.
The service set is called basic service set (BSS). WLAN supports ad-hoc network, which, as and when
a nodes come nearby in range, it forms the network. BSS supports ad-hoc network which, when godes
come nearby with in range of the access point, forms the network through ESS. A node can move
from one BSS to another. R
2. The other service set has several stations. It is called independent basic service set (IBSS). It has no
access point. It does not connect to the distribution system. It may have multiple stations, which also
cannot communicate among themselves. IBSS supports ad-hoc network.

802.11 provides specifications for physical layer and data link layers:
The data link layer specifies a MAC layer. The MAC layer uses carrier sense multiple access and collision
avoidance (CSMA/CA) protocol. A station listening to the presence of the carrier during a time interyal is

DQM pes and Communication Buses for Devices Network ; -

called distributed inter-frame spacing (DIFS) interval. If the carrier is not sensed (detected) during DIFS, then
the station backs off for a random tiiue interval to avoid collision and retries after that interval. A receiver
always acknowledges within a short interframe spacing (SIFS). Acknowledgment is made after successful
CRC {cyclic redundancy chec..) If there is no acknowledgement within SIFS, then the transmitter retransmits
and upto 7 retransmission attempts are made.

There is a packet called request to send (RTS), which is first sent. If the other end responses by the packet
call clear to send (CTS), then the data is transmitted. MAC layer specifies power management, handover and
registfation of roami~ , mobile node within the backbone network at a new BSS within the ESS.

There are th-- > communication methods at the physical layer. WLAN can use FHSS or DSSS or Infrared
250 np pulses. The physical layer has two sublayers. 802.11b has three sublayers: one is Physical Medium
Dependent (PMD) protocol which specifies the modulation and coding methods; the second is the Physical
Layer|Convergence Protocol (PLCP), which specifies the header and payload for transmission. It specifies
the sepsing of the carrier at receiver and how packet formation takes place at the transmitter and packets
assemple at the receiver. It specifies ways to converge MAC (Medium Access Control) to PMD at transmitter
and s ate MAC (Medium Access Control) from PMD at the receiver. An additional sublayer in 802.11b
specii?es Complementary Code Keying (CCK).

3.1#.4 ZigBee

de is an IEEE standard 802.15.4 protocol. The physical layer radio operates at 2.4 GHz band carrier
gncies with DSSS (direct sequence spread spectrum). It supports a range up to 70 m. Data transfer rate
ted is 250 kbps. It supports sixteen channels. Figure 3.15(c) shows a handheld device connected to
other flevices through wireless protocol using ZigBee.

The ZigBee network is self-organizing and supports peer-to-peer and mesh networks. Self-organizing
meang that it detects nearby ZigBee devices and establishes communication and network. Peer-to-peer network
meang the each node at network functions as a requesting device as well as a responding device. Mesh
k means that each network functions as a mesh. A node can connect to another directly or through
mutuglly interconnected intermediate nodes. Data transfer is between two devices in peer-to-peer or between
a device and multiple devices in the mesh network.

ZigBee protocol supports a large number of sensors, lighting devices, air conditioning, industrial controller
and other devices for home and office automation and their remote control and formation of WPAN (wireless
personal area network). ZigBee network has a ZigBee router, end devices and coordinator. ZigBee router
transfers packets from a neighboring source to a nearby node in the path to destination. The coordinator
conaefts one ZigBee network with another, or connects to WLAN or cellular network. ZigBee end devices
are trgnsceivers of data.

Its communication latency is 30 ms. Protocol stack overhead is 28 kB.

rtant points dealt with in this chapter are as follows.

ports, IO devices and timing devices are essential in any system.

\n embedded system connects to the devices like keypad, touchscreen, multiline display unit, printer or modem
‘ motors through ports. During a read or write operation, the processor accesses that address in a memory-

ppapped IO, as if it accesses a memory address. A decoder takes the system memory or IO address bus signals as
he input and generates a port or device select signal, CS and selects the port or device.

o HDLC is protocol for a synchronous communication data link network between the devices.

Embedded @*t:éms

There are two types of IO ports and devices, serial and parallel. Serial communication is in synchronous aster-
slave) mode or asynchronous mode.
A device connects and accesses from and to the system-processor through either a parallel or serial 10/ foét. A
device port may be full duplex or haif-duplex. g
A device or port has an assigned port address using which the processor accesses the device port contro g‘ster
or status register or data. A device can use the handshaking signals before storing the bits at the port biffer or
before accepting the bits from the port buffer. 74 t
Serial communication bits are received at the receiver according to the clock phases of the transmitter. Synchfogous
serial communication bits from the master carry the clock information also to slave. Asynchronous { serial
communication bits from a device do not carry the clock information to receiver. Receiver clock phase is inde ep ﬁ ent
of the transmitter clock. However, the receiver clock adjusts its phase according to the received bits, for iple,
the start bit. -

1

3
i

» A popular asynchronous serial communication mode is UART. Bits are received at the receiver mdepe it of

the clock phases at the UART (asynchronous serial input and output port) transmitter. UART in rmcroco ollers
usually sends and receives a byte in a 10-bit format or 11-bit format. *
Another popular asynchronous serial communication mode is RS232C, which is based on UART and is'ds4d to
connect the data communication equipment such as modem with a data terminal equipment such as comg c:r
UART and RS232C can also use handshaking signal DCD and a pair of handshaking signals, (DSR, D1)aand
(RTS, CTS).

o Other popular serial ports in the devices are SPI, SCI, SI and SDIO.

. t
Parallel communication is without or with handshaking signals. The number of embedded systems paral l\bort
or device interfaces to switches, keypad, encoders, motors, LCD controllers and touchscreen. Special § purpose
ports exist at microcontroller for their interfacing. On-chip peripheral devices internally interface with the pi¢ $s0r
in microcontroller. ;
A timer is essentially a counter getting the count-inputs (ticks) at regular time intervals. Timing and oD qtmg

devices have a large number of uses in a system. There has to be at least one hardware timer in a system. Software
timer is a virtual timing device. A program can use number of software timers in a system. f i
Internal programmable timing devices with a processor (microcontroller) unit can be used for many app 4ons

and to generate interrupts for the ticks for software timers. '
Watchdog timer is special timer which timeouts and generates interrupts in case certain specified event dd 4 not
occur during the preset interval. The watchdog timer is used to take care of a system stuck in a certain setfidn of
a task for an unnecessarily long time due to some error or hardware failure. b | !

o Real-time clock generates ticks and interrupts the system at regular intervals. i
The use of buses simplifies the interfacing to multiple devices. Several devices can be placed on a commar sbrial
bus. Popular serial buses are I’C, CAN, USB and FireWire. Each device has an assigned device address 6 set of
addresses. Using the device addresses of the receiver or slave, a master-processor accesses the remote de iges.
IC bus is used between multiple ICs for inter Integrated Circuit communication. A device, which initiates tha ofum-
unication and sends the clock pulses, is the master at an instance. A master can communicate to maximum]27 laves
The CAN bus is popularly used in centrally controlled network in automobile electronics.

USB (Universal Serial Bus) is standard for serial bus communication between the system and devices hke
keyboard, printer and mouse. There is a root-hub and all nodes have a tree-like structure.

Several devices can be placed on a common parailel bus. Popular parallel buses are ISA, PCI and A !
Very short distance devices interconnect to a PC or embedded system main bus through the ISA or PCI o A
bus can be used. These buses connect to main memory bus through a bridge (switch). {1
Internet-enabled embedded systems network through protocols in a TCP/IP protocol suite. Popularly used py : 4 ols

o Wireless communication is used for networking handheld devices over wireless personal area network.
¢ Embedded systems can interconnect and network without wires using IrDA, Bluetooth, 802.11 or ZlgBee

are HTTP, TCP, UDP, IP and Ethernet. -
01

compatible hardware and software support.

PO

Dév es and Communication Buses for Devices Network 181

schronous Communication

Bllﬁe;ooth
CAN bus

CQV port

CaLm:l register

Copgrol cum Status register

Colnter

D@uncing

befay

i

Depmultiplexing

Deice

{)eyii(ce Decoder
Evgnt

EV?#I flag

Keywords and their Definitions

: A communication in which a constant phase difference between the transmitter

clock and bit recovery clock at the receiver need not be maintained and the
clocks that guide the transmitter and receiver are not synchronized. Time interval
between which a set or frame of bytes transmits is not pre-fixed and is
indeterminate. Asynchronous communication also provides for exchange of
handshaking signals before and during the communication.

: A self-discovery and self-organizing network protocol for the wireless personal

area network and popularly used in mobile handheld devices.

: A standard bus used at the control area network generally in automotive and

industrial electronics.

: A port at the computer where a mice, modem or serial printer or mobile smart

phone cradle connects for serial IOs in UART mode and there are handshaking
signals for exchange of signals before UART mode communication.

: A register for bits, which controls or programs the actions of a device. It is used

for a write operation only.

: A register at a port address that saves control and status bits and functions as a

control register during write of commands and status register address during
read of the status.

: Unit for getting the count-inputs on the occurrence of events that may be at

irregular intervals. It functions as timer when given count-input at regular
intervals.

: When a key is pressed, due to spring action, the key vibrates and thus makes

and breaks the contacts. This causes multiple Os and 1s before the switch pressed
state is accounted for. Debouncing by hardware or software removes the signals
due to bounces.

: An action or communication or execution of codes or occurrence of an event

after blocking for a certain pre-defined period.

: A way to separate a multiplexed input and direct the messages to one of the

multiple channels at an instance. :

: A unit that has a processing element and that connects to the processor of

embedded system internally or through the port or bus. It has fixed pre-assigned
port addresses (device addresses) according to its interfacing or bus controller
circuit. A device may not provide for bus controller in it for enabling it to function
in bus master mode and thus can function in slave mode only.

: A circuit to take the system address bus signals as the input and generate a

device select signal, CS, for the port address selection during the device read or
write instructions of the system processor.

: A change of present condition, which gives an electric signal at input or output

pin or which changes a status bit or which interrupts the processor to enable
some action by switching the context and running can ISR.

: A Boolean variable to indicate the event occurrence when it is true; it can be a

status register bit. An event register may store the event flag. A flag auto-resets
on response to the event in most systems.

Free Running Counter

FSK modulation
Full duplex

Half duplex
Handshaking signals
Hardware timer
HDLC

Host

IO Port

PC bus

Input Buffer
IrDA

ISA bus

Isosynchronous Communication

Keéypad and Keyboard Controllers :

: A controller node using a protocol and a circuit for enabling the system to ¢

: A port for input or output operation atan instant. Handshake i input and h

: A standard bus that follows a communication protocol and is used

: A standard bus based on ‘IBM Standard Architecture’ Bus.

: Communication in which a constant phase difference is not maintained een

Embedded Sp+tems
|

: A counter that starts on power-up, which is driven by an internal clock { item

clock) directly or through a prescaler or rate control bits and which cam her
be stopped nor be reset. I

: Frequency Shifted Keying. The 0 and 1 logic states are at diffeient

frequency levels. For example, 0 at 1050 Hz and 1 at 1250 Hz on a teléphone
line. It permits use of a channel or a line such as telephone line for sefial bit
transmission and reception.

: A serial port having two distinct IO lines or communication channels. For

example, a modem connection to the computer COM port. There are tw lines
TxD and RxD at 9 pms or 25 pins connector. Message flows both waya .'i an
instance. "

: A serial port having one common.IO line or channel. For example, a telqph_one

line. Message flows one way at an instance,

: The signals before storing the bits at the port buffer or before accepting gzblts
n

from the port buffer or the signals to setup or end the communication
two source and destination.

: A timer present in the system as hardware which gets the inputs from the i al

clock with the processor or which enables the system clock ticks (inte:) A
device driver program programs it like any other physical device.

: High Level Data Link Control Protocol. It is for synchronous communitation

between primary (master) and secondary (slave) as per standard defined. [Itis a
bit-oriented protocol.

the number of devices or peripherals and for providing bus master

output ports are also known as IO ports. For example, a keypad is said to
to an IO port.

multiple ICs. It permits a system to get data and send data to multiple comphatible
ICs connected on this bus.

: A buffer where an input device puts a byte(s) and the processor read ; ldter.

: Infrared Data Association recommended protocol for IR remote con gl and

communication over short distance to device or system in line of sight.

the frames but maintained within a frame. Clocks that guide the transmit nd
receiver are not separate. Only the maximum time mtprval is not prefixed n
whlch a frame of bytes transmits that is, it can be variable. Between the

transmission on a LAN or between two processors.

The controllers for interfacing with keypads and keyboard such that
debouncing of keys, buffer the input characters and interrupt the proce
each input or at end of the line character and send ASCII code(s) as inpu
the processor for further processing and interpretation as data or comm

T Oon

si to

-

Dew and Communication Buses for Devices Network ‘ :

LE .controller
i :

K

Master slave communication

Mui:lplexing
¥

Opén drain output

Quiput buffer

Pa lel port
PClbus

.)
PSK modulation

 Regl Time

Regl Time Clock (RTC)

On<hip ports and devices

Quust bi-directional port.

: A controller for LCD displays with internal CGRAM (character, graphic RAM)

and ROM for fonts of the characters and which gets the commands and data for

_ display from the system port. _

: A communication between two processors of devices wh'en one pmcessor guides

the other using a clock the transmission of the bits to a slave after or before receiving
acknowledgement or reply from the addressed slave. A- slave c¢an alsofunction as
master or vice versa by an appropnate program bit or- handware comml

" Away todirect the messages to output channel from the multlple source channels.

: The ports ‘and devices along with the ‘processor unit, for example, ‘in

microcontrollers, which communicate usmg system internal buses.

:-A gate with an mtemally missing connection between its drain and supply The

advantage is that it pulls up-the requu:ed circuit voltage and current levels when
mterfa(:lng An external pull up cjreuit is needed when using the output.

YA register buffer from where an output devrce recerves the byte(s) after a

processor-write, operation.

: A port for read and wtite operattons on multiple bits. s1multaneously at an instance.
: A standard bus used as a ‘Penpheral Component Interconnect™ bus..

: A standard bus used as a ‘PCI Extended ‘bus’. h

: A shift reglster for a Parallel Input and Serial Output It is used for serial bit

reception in synchronous mode.

: ‘A device on a bus can be automatically detected when it is attached to the bus

and the device can be used directly without resetting or restarting the system.

: A way of transmitting messages on a network by using software that adds

additional bits such as the starting bits, headers, addresses of source and
destination, error control and ending bits. A protocol suite -may have multiple
layers and each layer or sublayer uses its protocol before a message transmits
on a network. - . S

: Phase Shifted Keying modulauon The Oand 1 logrc have dlfferent phases ina

high frequency signal. PSK modnlatron perimits use of a channel or line such as
telephone line for serial bit transmnssron and recepuon :

: Quadrature Phase: Shlfted Keymg An example is.the pau' of brts 00 01 10 and -

11, which are ser u aifferent quadrant phase drfferences of a voroe frequency
s1gnal It perrmts use of the telephone line for' sérial bit transmlssron and reception
at double the rate. It permits thé 56 kbps: modem o showa performance equivalent
to112. kbps QPSK and its enhancements are also used i wrreless commumcanon :

. extensrvely

. A port. with the dual advantage of usmg a pull-up- cucuit as per‘ the voltage and
current levels requlred when mterfacmg it and usmg no pull—up cucurt fora

short period suffic1ent to drive an LSTl"L circuit. .

: A time that always increments af- constant intervals wrthout stoppmg or resettlng

and that is-used-as a reference by the system at, all nmes

T A clock ‘that contmuously generates mterrupts atx regular mtervals ertdlessly An'

RTC interrupt ticks the other timers of the system, for ‘example, software umers'
(SWTs).

RS232C port

RxD
Serial Port
SIPO

Software timer

Status register
Synchronous Communication

System Clock

Time division multiplexing
Timer Finish

Timer Overflow or Time-Out
Timer Reset

Timer Reload

Touch Screen

TxD

UART

: A standard for UART transmission and reception in which TxD and RxI¥

: A line used for reception of UART serial bits. The 0 and 1 signals are at

: Communication in which a constant phase difference is maintained betw the

different voltage levels (+12 V for ‘0’ and —-12 V for ‘1’) and han
signals, CTS, RTS, DTR, DCD and RI are at the TTL levels. The
standard is used at the COM ports.

RS232C levels and are similar to that for a TxD line.

bits transmission in synchronous mode.

: Software (a service routine) that executes and increases or decreases a cpunt-

variable on an interrupt from a tJmer output or from a real-time clock i ints

finishing value of the count-variable (reaching the predefined value) or ge
a message for a task. The interrupts can generate by using software in¢
instruction such as SWIL.

: A register for bits, which reflects the status at the port buffer. It is for réad

operation only. The status register bit or bits may or may not auto-resgtion
device servicing after the read.

clocks that guide the transmitter and receiver. A maximum time interval i pre-
fixed between which a frame of bytes transmits.

. A clock scaled to the processor clock and which always increments without

stopping or resetting and generates interrupts at preset time intervals.

: A way by which messages from different channels can be sent in different] time

slots.

: A state after the timer acquired the preset count-value and stopped. An interrapt

generates on finishing.

: A state in which the number of count-inputs exceeded the last acquirable yalue

and on reaching overflow state, an interrupt can be generated.

: A state in which the timer shows all bits as Os or 1s. A reset can also be a.fter

overflow in case a timer is programmed for continuous running.

: State in which timer shows all bits as Os or 1s. A reload can also take plaomaﬁer

finishing in case a timer is programmed for auto reload and start again.

: A GUI device for displaying icons, pictograms, menus and virtual key on

an LCD screen and giving input commands or selecting menus or keying in the
data using finger or stylus for touching at appropriate screen-position.

: A line used for transmission of UART serial bits. The 0 and 1 signals. y at

RS232C voltage levels when RS232C COM port is used, or at the TTL lev ls in
microcontrollers. :

! i
: A standard Asynchronous Serial Input and output port for serial bits. UART (in

microcontrollers) usually sends a byte in 10-bit format or 11-bit format{ The

and Communication Buses for Devices Network

10-bit format is used when a start bit precedes the 8-bit message (character) and
a stop bit succeeds the message. An 11-bit format is used when a special bit also

precedes the stop bit.
) bus : A standard plug and play bus for fast serial transmission and reception.
‘ j&og timer : A timing device in a system that resets or executes a watchdog timer service

routine (WDT routine) after fetching the interrupt vector address at the system
after a predefined timeout in case a watched event does not happen. When the
watched event occurs, it is restarted so that it does not timeout and does not
execute WDT routine.

: A wireless LAN for networking mobile and wireless devices with a fixed
infrastructure and which enables access of devices through access points. The
device functions according to IEEE 802.11 standards specified protocols.

: A new wireless network protocol for short-range communication among number
of sensors and devices and has self-discovery and self-organizing features.

Review Questions

a) What is the advantage of a processor that maps the addresses of 10 ports and devices like a memory-device?
) Give a diagram to interface the port devices with the system buses.

ompare the advantages and disadvantages of data transfers using serial and parallel ports/devices.

) Explain three modes of serial communication, ‘asynchronous’ ‘isosynchronous’ and ‘asynchronous’ using
ial devices with one example each. (b) Describe and compare UART, RS$232C and SDIO devices.

ow do the following indicate the start and end of a byte or data frames? (a) UART (b) HDLC (c) CAN

at are the internal serial-communication devices in (a) 8051 and (b) 68HC11? Compare the modes of working
f each of these.

device port may have multibyte data input buffer(s) and data output buffer(s). What are the advantages of these?

plain the advantages of Internet-enabled systems. How is the Internet-enabled device incorporated in the embedded
ystem?

plain the advantages of wireless devices. How do wireless devices network using different protocols?

at do you mean by buses for networking of serial devices? What do you mean by buses for networking of
arallel devices?

plain use of each control bit of I°C bus protocol.

hat do you mean by plug and play devices? What are bus protocols of buses UART, RS232C, USB, Bluetooth,
AN and PCI that support plug and play devices?
at do you mean by hot attachment and detachment? What are bus protocols of buses Bluetooth, UART, CAN,
1, and USB that support hot attachment and detachment?

at is a timer? How does a counter perform (a) timer functions (b) prefixed time inititated events generation and
{c) time capture functions?

. Mhy do you need at least one timer device in an embedded system?

|
l

i

- o L Embeddedsv+r»s

16.

18.

19.

20.
21.

22.

23.

24.

25.

26.
27.
28"

29.°
30.

| |
k-/. Practice Exercises ‘ I

15.

IOs (c) Dynamically controlled impedance matching (c) PCS subunit (d) PMA subunit and (e) SerDes. Giye one
exemplary application of each.

PPP protocol for point to point networking has 8 starting flag bits, 8 address bits, 8 protocol specification bits,
variable number of data bits, 16-bit CRC and 8 ending flag bits. The maximum number of bits per PPP frame can
be 12064. How many maximum number of bytes can be transferred per PPP frame? What is the minimum percpntage
of overhead in the payload (frame)?

How do the following device features help in embedded systems? (a) Schmitt trigger input (b) low voltaii3 3V

. List the applications of the free running counter, periodically interrupting timer and pulse accumulator cpunter

(PACT). How do you get PWM output from a PACT? How do you get DAC output from a PWM device?
A 16-bit counter is getting inputs from an internal clock of 12 MHz. There is a prescaling circuit, which prdscales
by a factor of 16. What are the time intervals at which overflow interrupts occur from this timer? What wil be
period before which these interrupts must be serviced?

What do you mean by a software timer (SWT)? How do the SWTs help in scheduling multiple tasks in real time?
Suppose three SWTs are programmed to timeout after 1024, 2048 and 4096 times from the overflow intgrrupts
from the timer. What will be rate of timeout interrupts from each SWT?
What are the advantages and disadvantages of negative acknowledgement bit?
A new generation automobile has about 100 embedded systems. How do the bus arbitration bits, control Hits for
address and data length, data bits, CRC check bits, acknowledgement bits and ending bits in CAN bus hj]lp the
networking of devices distributed in an automobile system. :
How does the USB protocol provide for the device attachment, configuration, reset, reconfiguration, bandwidth
sharing with other devices, device detachment (while others are in operation) and reattachment?
Design a table that compares the maximum operational speeds and bus lengths and give two example of the yses of
each of the following serial devices: (a) UART (b) 1-wire CAN (c) Industrial I2C (d) SM I*C Bus (e) SPI of 68
Series Motorola Microcontrollers (f) Fault tolerant CAN (g) Standard Serial Port (h) FireWire (i) I>C (j) High
Speed CAN (k) IEEE 1284 (1) High Speed I°C (m) USB 1.1 Low Speed Channel and Hi gh Speed Channel (n} SCSI
parallel (o) Fast SCSI (p) Ultra SCSI-3 (q) FireWire/IEEE 1394 (r) High Speed USB 2.0.
Use web search. Design a table that compares the maximum operational speeds and bus lengths and give two
example of the uses of each of the following parallel devices: (a) ISA (b) EISA (c) PCI (d) PCI-X (¢) COMPACT
PCI (f)_GMII (Gigabit Ethernet MAC Interchange Interface) (g) XGMI (10 Gigabit Ethernet MAC Interchange
Interface) (h) CSIX-1. 6.6 Gbps 32-bit HSTL with 200 MHz performance (i) RapidlO™ Interconnect Specification
v1.1 at 8 Gbps with 500 MBps performance or 250 MHz dual direction registering performance using 8- b1t VDS
(Low Voltage Data Bus).

Use web search and design a table that glves the features of the following latest generation serial buses. (a IEI:E
802.3-2000 [1 Gbps bandwidth Gigabit Ethernet MAC (Media Access Control)] for 125 MHz performance (b) IEE
P802.30e draft 4.1 {10 Gbps Ethernet MAC] for 156.25 MHz dual direction performance] (c) IEE P802.30¢ draft
4.1 {12.5 Gbps Ethernet MAC] for four channel 3.125 Gbps per channel transreceiver performance] (dy KAUI
(10 Gigabit Attachment Unit) (¢) XSBI (10 Gigabit Serial Bus Interchange) (f) SONET OC-48, OC-192 and
OC-768 (g) ATM OC-12/46/192."

Take a mobile smart phone with a T9 keypad. Write a table for the states of each key. Write another table for the
new states generated by a combination of two keys.

Compare. the parallel ports interfaces for the keypad, printer, LCD-controller and touchscreen.

S’how the use of USB devices in the digital camera, printer and computer for downloading a picture from camera to
computer printing the pictures in camera and savmg in flash memory What is the difference between USB host
and USB device in a system? : N

Compare different serial buses.

Compare different wireless protocols.

Viechanism

Device Drivers and
"

terrupts Service

B []

’
€ °
¢

°
a °

K We have learnt the following in previous chapter:

Embedded system hardware has devices which
communicate through serial and parallel ports
and buses. There may also be ports for real-
time voice and video 1/Os.

A microcontroller has serial communication
and timing devices. It may have keypad, stepper
motor, LCD and touch screen controllers.
Serial or parallel buses interconnect the
distributed ports and devices.

I2C bus is used for inter-IC communication. It
interconnects multiple distributed ICs.

CAN bus is used at control network of the
distributed devices. It is used in automobiles
and industrial systems.

USB is used for the fast serial transmission and
reception between the embedded-system and
serial devices such as the keyboard, printer and
scanner.

FireWire (IEEE 1394) is bus used for the high-
speed interfacing of 800 Mbps multimedia
devices.

We also learnt
e A device-access is required for opening, connecting, bi

communication of devices between the host comput
system and PC-based devices or systems or cards, for ex
NIC (Network Interface Card).

Wireless protocols are used for the communication

e Parallel buses, ISA and PCI/PCI-X are used fo:}ihus

or
ple,

and

synchronization of distributed devices in wireless perspnal

area network.
Internet-enabled embedded systems can network t
Internet using the TCP/IP suite of protocols.

reading, writing, disconnecting or closing it. Processor acc

processor accesses the internal devices, devices at the 1/0
peripheral devices and other off-chip devices using
addresses.

ihe

A simple device such as SPI port (Section 3.2.4) has addre¢sses

for three sets of its registers: data register(s) (or buffj
control register(s) and status register(s).

A device can also have number of registers (Table 3.4).
example, PCI bus-driven device (Section 3.12.2) has 64 b
standard device-independent configuration registers.

Pr'sS),

For

ytes

e = =

In this chapter, we will learn how the concept of interrupt service routines is used
to address and service the device 10s, requests and interrupts. We will learn the
Jfollowing:

1.
2.

3

R

O N

10.
1.
12.
13.

14.
15.

Programmed I/O busy and wait method and problems with this I/O method.
Interrupts and working of interrupts service mechanism in the system and simple
examples of hardware and software interrupts.

Interrupt service routine (ISRs) are called by the system when device-hardware
interrupts take place.

Software functions for the signals and exceptions also call ISRs. An ISR is also
called on a trap or execution of a software instruction for interrupt.

Use of interrupt vectors, vector table and masking.

Interrupt latency and deadline for an interrupt service.

Context and context switching on an interrupt.

New methods for the fast context switching adopted in the processors.
Classification of processors for an interrupt service that ‘Save’ or ‘Don’t Save’
the context other than the program counter.

Use of the DMA channel for facilitating the small interrupt latency period for
the multiple data transfers in quick succession.

Assignment of software and hardware priorities among the multiple sources of
interrupts.

Methods of service in case of simultaneous service demand from multiple
interrupting sources.

Device drivers for a device or port initialization and accesses.

Use of device drivers, for example, Linux Internals.

Examples of device initialization and device driver coding for the parallel ports
and serial-line UART.

4.1~ PROGRAMMED-I/O BUSY-WAIT APPROACH

WITHOUT INTERRUPT SERVICE MECHANISM

Example 4.1 shows an example of programming a device service with programmed
/O busy-wait approach without using a device interrupt and the corresponding ISR.
This example will make clear the problems in this approach and advantages of using
an interrupt-based service mechanism.

Example 4.1

Assume a 64 kbps network. Using a UART that transmits in the format of 11-bit
per character, the network transmits at most 64 kbps + 11 = 5818 characters per
second, which means that for every 171.9 ps a character is expected. Before
171.9 ps, the receiver port must be checked to find and read another character
assuming that all the received characters are in succession without any time gap.

»’i‘m pon Abe awn Exhemet mterfacecard ina PC andport B be its modem input which puts the ¢ -f’i
“on the telephone line. Let In_A_Out_B be a routine that receives an input character from’
and re-transmxts an output character to port B. Assume that there is no mterrupt genera

‘executes the cycles of functions i to v, thus ensuring “that the modem port A does not miss rea
character.
In_A_Out_B routine: :
Call function i i
Call function ii ’ E
- Call function iii
Call function iv
Call function v 11
. Loop back to step 1 o
In _A_Out B routine calls the following steps.
Step a: Function i: Check for a character at port A. If not available, then wait.
Step b: Function ii: Read port A bytcs (characters for message) and return to step a instruction, wluch will
call function iii. o
Step ¢: Function iii: Decrypt the message and return to step a instruction, which will call functlon w
Step d: Function iv: Encode the message and return to step a instruction, which will call functlo
Step e: Function v: Transmit the encoded message to port B and return to step a last instruction, wi wal]
start step a from the beginning.
Step a is also called polling. Polling a port means to find the status of the port, ready with a character (byte)
at input. Polling must start before 171.9 us because characters are expected at 64 kbps. If the : gram
instructions in the steps b, ¢, d and e and functions ii to v take a total running time of less than 171 % snhen
this approach works.
Problems with the busy-wait programming approach is as follows.
1. The program must switch to execute the In_A_Out_B cycle of steps a to e within a period 1 sﬁthan
' 171.9 ps. Programmer must ensure that steps of In_A_Out_B and any other device prog ‘
never exceed this time. ;
2. When the characters are not received at Port A in regular succession, the waiting period dug
step a for polling the port can be very significantly. Wastage of processor time for the wai ‘7
periods is the most sxgmﬁcant disadvantage of thc busy-wait approach }

e 2

PP wN -

as switches to poll each port or device on time and then execute each service ce routines relat ¢
functions of other ports and devices w1th1n a spec1ﬁc time interval and ensure that each o
polled on time. '
4. The program and functions are processor- and device- -specific in the previous busy- wail :
approach and all system functions must execute in synchronization and the timings are ,1;;
completely dependent on periods taken for software execution.]

Instead of continuously checking for characters at the port A by executing function (i), when a

modem

receives an input character and sets a status bit in its status register, an interrupt from port A should be

generated. In response to the interrupt an interrupt service routine ISR_ PortA _Character should
executed (Example 4.2 in Section 4.2). This will be the efficient solution instead of wait at step a.

ulen be

Deviop; Drivers and Interrupts Service Mechanism " i
Devjce service without using an ISR is by the routine (function) call similar to In_A_Out_B.

routine (function) call has the following features.

1. |A function call after executing any instruction in any program is a planned (user-programmed) diversion
from the current sequence of instructions to another sequence of instructions and this sequence of
instructions executes till the return from that.

2. |On a function call, the instructions are executed as a function in the ‘C’ or a method in Java.

3. [Function calls are nested. Nesting can be explained as follows: when a function 1 calls another function
2 which in turn calls another function 3, then on return from 3, the return is to function 2 and then to
function 1.

Fig\f 4.1 shows the In_A_Out_B routine steps a to e for the five functions i to v called by In_A_Out_B

and how each called function processes on a call and on a return from that. Numberings on the arrows show
the seqnuences during the program run (flow).

| Network Driver Program In_A_Out_B without Interrupts

i Step a Step b
Call a Function (i) that waits
1| for a start at port A and when
bit starts reaching, call 2 | Function (i) Reads a mmage
Function (ii) from port A and return
; Save PC, Status word and 3
Acftg:ns Registers on Stack) -
Rrocessor
Context Retrieve PC, status word and Function (jii) Decrypt
$witching Registers from Stack 5| the message and retum
Step ¢ 6,
4 i Call Function (i) [Functon (i Encode | |
Step d » - the fnessage and return
7 [CalFuncion(v) | Lo
3
Step e 11 | Function (iv) Transmit
1] Call Function (v) [encoded message and
retum
PC means 12
Program Counter]

Steps a to e for five function calls in an exemplary network drive program. IN_A_OUT_B,
also shown is how each called function processes on a call and on a return. Numberings
on the arrows show the program running sequences

proach is “programmed IO’ transfer, also called ‘busy and wait” transfer for service (accessing the
j' addresses for input or output or any other action). System functions in' synchronization and the
5 are completely software-dependent. When waiting periods are a significant fraction of the total
progfam’s execution period. wastage of the processor’s time in waiting is the most significant disadvantage
of ﬁ 4 approach Programmed IO approach can be used in single-purpose processors (controllers).

Embedded 5’+Dms

|
4.2 ISR CONCEPT i

Interrupt means event, which invites the attention of processor for some action on the hardware or sftware

event.

1. When a device or port is ready, a device or port generates an interrupt or when it complétes the

assigned action, it generates an interrupt. This interrupt is called hardware interrupt.
When software run-time exception condition is detected, either processor hardware or a s¢ftware
instruction generates an interrupt. This interrupt is called software interrupt or trap or exception.

Software can execute the software instruction for interrupt to signal the execution of ISR. The interrupt
due to signal is also a software interrupt [The signal differs from the function in the sense that the
execution of the signal handler function (ISR) can be masked and till the mask is reset, the handler will
not execute. Function on the other hand always executes on the call after a call-instruction.]

In response to the interrupt, the routine or program, which is running at present gets interrupted and|an ISR
is executed. ISR is also called device driver ISR in the case of devices and is called exception or signallor trap
handler in the case of software interrupts. Device driver ISRs execute on software interrupts from|device

open (), close (), read (), write () or other device functions.

Examples in Sections 4.2.1 and 4.2.2 show the importance of interrupts and accessing of the devices using

the ISRs and the importance of using the ISRs which generate on traps or exceptions or signals.

4.2.1 Examples of Port or Device Interrupts and ISRs

Following are the examples of interrupt events and accessing of devices using the ISRs.

Example 4.2

Recapitulate Example 4.1. Assume that a character input to the modem generates a port A interrupt

a status bit in the status register. On interrupt, a service routine ISR_PortA_Character runs so that it e

that the modem port A does not miss reading the character. ISR_ PortA_Character executes step f if

of the step a function i and step b function ii of In_A_Out_B routine in Example 4.1. It places th

character in a memory buffer. Steps ¢, d and e are independent and are now parts of a function-call
ISR _ PortA _Character executes as follows: '
1.

2.
Out_B routine is as follows:

1.

2.
3.
4.

Figure 4.2 shows the step f executing on ISR_ PortA _Character on port A interrupt and steps g ” & in
Out_B routine. Numberings on the arrows show the program running sequences. 3

Step f function vi: Read Port A character. Reset the status bit so that the modem is ready for glqext
character input (resetting of the status bit is generally automatic without the neefl ‘for
specific instruction). Put it in a memory buffer. Memory buffer is a set of memory addresses where
the bytes (characters) are queued for processing later. :

Return from the ISR.

Step g: Call function vi to decrypt the message characters at the memory buffer and return for; the
next instruction step A. :
Step h: Call function vii to encode the message character and return for the next mstructxon : ﬂ k.
Step k: Call function viii to transmit the encoded character to port B. 4

Return from the function. 5

Drivers and Interrupts Service Mechanism : 193 l

.) <
| Cumentprogram |« ;
L On interrupt call ISR_ PortA _Character

i

A R

’ 1 l Save PC, status word and registers (current program context) on stack J
’2 Execute function vi codes (read character, reset port status bit, character
save in memory buffer)
3| Return (retrive the saved context) J
Y

T o LT)

Each step has three parts, save context, execute, and retrive the context for return

. _:, .2 Step fexecuting on ISR_ PortA _Character on port A interrupt and steps
g to k in Out_B routine. Numberings on the arrows show the sequences
of running the program-steps f, g, h and k

iximple 4.3 o
j@me a device for coin amount input in an automatic chocolate-vending machine (Section 1.10.2).
fifl§out interrupt mechanism, one way is the busy wait transfer by which the device waits for the coin
pi@nuously, activates on sensing the coin and runs the service routine.

' B the event-driven method the device should awaken and activate on each interrupt after sensing each
bk inserting event. The device is at an input port. It collects a coin inserted by a child. The system
svikens and activates on interrupt through a hardware interrupt. The system on port hardware interrupt
pldcts the coin by running a service routine. This routine is called interrupt handler routine or ISR or
pWice driver function for the coin-port read. Figure 4.3(a) shows the ISR in the ACVM example.

- - 1 2 [
Coin event Interrupt Coinevent | Call | Read port PO-P3 bits
' input Reset port status bit ;

Event: Coin insertion, processor Data amount at a memory b

sorting and coin amount PO-P3[] atadevice | bus %ﬂataskma buth
< (tor2or5or10)sentto ¥

" an input port PA). Set port Y3

. status bit t 4 Roum § Signal ACVM System

(a) ISR or Task

' : Embedded SYSl*Tﬁ

1 2

" Interrupt > ISR_FrameRead
Sitoch sar eeen intorrupt gzneg Call | start ADC scan using a signal ;
: pressed i < Signal 1 task read frame status
tEakv:";;i:zue and © PO-P3 g‘rguctessor Data | @nd data of all pixels of image ‘
pressed key code sent at "] atcamera | pus | frame at CCD co-processor
port - Signal 2 task for saving pixels i
t 7 Return | data ataframe memory buffer
} Signal 3 tasks for subtracting
To.CCD pixels ADC scan —«— ©ffsets and compress image data

Tyt §s ye

(b lSignalscamerasys&emtasksl 1 ;

1 2 :

»{ Mobile > eR. :

- Flosstavort Interrupt | Keypad Call gmkgymsmmmw

Event: Reset m‘s ——> Resetkey state status bit
prossed — ' Send messages for tasks o
rKeesyetmemogi?e PO-P7] processor | Data | po gepiay fortaskstosnable i
Astatus bit sets: atmobie | PUS | gigngi tmer start for enabliing | |

f_wﬂ_ display off after 15 s (preset time) H

3 ,} 4
(~] Signal timer tasks Send messages for tasks

Fig. 4.3 (a) Use of ISR in the automatic chocolate vending machine (b) Use of ISR and
three signals 1, 2 and 3 for three tasks in the digital camera example (c) Use of
ISR in the mobile phone reset-key interrupt example

Example 4.4

Assume a digital camera system (Section 1.10.4). It has an image input device. When the system activaf
device should grab image-frame data. The system awakens and activates on a switch inferrupt. The in
is through a hardware signal from the device switch. On the inferrupt, an ISR (can also be conside ¢
camera’s imaging device-driver function) for the read starts execution, it passes a message (signal) 1 b 3
function or program thread or task, which senses the image and then the function reads the CCD device frane
buffer; then the routine passes signal 2 to another function or program thread or task to process and
signal 3. Subtracts offsets using a task and compresses image-data using a task. This task also saves!
image frame data-compressed file in a flash memory. The camera system again awakens and activates ‘ v
interrupt through a hardware signal from a device switch and prints the file picture image after file |
decompression. The system on interrupt then runs another ISR. The ISR routine is the device- j
driver write-function for the outputs to printer through the USB bus connected to the printer.
Figure 4.3(b) shows the use of the ISR for frame read in the digital camera example.

ISR accesses a device for service (configuring, initializing, activating, opening, attaching, reading, writing,
resetting, deactivating or closing). ISRs thus function as the device drivers.

%{Drivers and Interrupts Service Mechanism ‘

Ass’u he a mobile phone system (Section 1.10.5). It has a system reset key, which when ‘pressed resets the
 to an initial state. When reset key is pressed the system awakens and -activates a reset interrupt
thrdugh a hardware signal from reset key circuit. On the interrupt, an ISR (can also be considered as reset-
key! dvice-driver function) suspends all activity of the system, sends messages to the display functions for
the program threads or the tasks for displaying the initial reset state menu and graphics on LCD screen,
and #so signals t~ activate LCD display-off timer device for 15s timeout (for example). After the
timeokit the <;stem again awakens and activates on interrupt through the internal hardware mgnal
from fimer device and runs another ISR to send a control bit to the LCD device. The ISR routine is

‘ ‘i'xce-dnver LCD off-function for the LCD device. The devices switch off by reset of control
‘ 4.3(c) shows the use of the ISR in the mobile-phone reset-key interrapt.

4.2, Zf Examples of Software Interrupts and ISRs

Examﬁles 4.2 to 4.5 clearly show that interrupts and ISRs (device-drivers) play the major role in using the
system| hardware and devices. Think of any system hardware and it will have devices and thus needs device
drivellThe embedded software or the operating systent for application software must consist of the codes for

the device (i) configuring (initializing), (ii) activating (also called opening or attaching), (iii) driving function
for reafl, (iv) driving function for write and (iv) resetting (also called deactivating or closing or detaching).
Each dbvice task is completed by first using an ISR—a device-driver function calls the ISR by using a software
instruction (SWI).

gram must detect error condition or run-time exceptional condition encountered during the running.
In a program either the hardware detects this condition (called trap) or an instruction SW1 is used that executes
on detdcting the exceptional run-time condition during computations or communication. For example, detecting
that the square root of a negative number is being calculated or detecting the illegal argument in the function
ing that the connection to network is not found. Detection of exceptional run-time condition is called
wiig an exception by the program. An interrupt service routine (exceptional handler routine) executes,
whichlis called catch function as it executes on catching the exception thrown by executing an SWI.
Figure|4.4(a) shows use of SWI instruction for calling an ISR in the function for throwing and catching the
exceptjonal run-time conditions encountered during computations. Figure 4.4(b) shows the use of signal
gener: by SWI, and signal handling after that.

1 Function
throw event at I-———> Exceptional handler »{ End ek
I Software | Find exception sourceat | Call | Run Codes at
int t codes for actions
Evdnt: Throwing an exception a1 on mermup E:%!aken onk:vent al "t:) m i;to:;id
detecting an exception condition or tch (E . 1o wh
errdr condition in try block (1an () :x,g G
2 Find exception source a2 expeptions or
[throw event a2 ’——» Run codes for actions to tryblock
Software | pe taken on event a2 in instructions
Evént: Throwing an exception a2 interrupt catch (Exception_1 a2 { } finished
on fletecting an exception condition - ‘
or r condition in try block . Call function to execute at
Status Flags for the ord '
Exception sources in the
memory]

Y

1. Aprogram or task or routine 1 Find signal a1

RunCodes , Software | 34D codes for actions to be
2. ‘Signal {event e1) 1o 1un routine 1 interrupt taken on signal a1 from program
Eind signal a2 |
1. Aaanmuuxumka:mumm 2 ﬁﬁﬂ:ﬁfﬁgﬁ;ﬁg’“”°b°-
2 5 (ez)tomn i 2 ﬁcta;t::gte program 1o execute at'end

(b)

(ISR) in the software on throwing and catching the exceptional run-time con
encountered during computations (b) Use of SWIs to signal another routines or pr
tasks or program threads to start

Fig. 4.4 (a) Use of software interrupt (SWI) instruction for calling an interrupt service rt{tines

Example 4.6 is given here to clearly show that SWI and execution of the ISRs (also called exd
handlers or just exceptions) on SWIs. The SWIs also play a major role in embedded system software
use of ISRs for device driver functions—create (), open (), read () or other.

Example 4.6

itions
gram

eption
by the

Cmsmﬂ'ef"ﬂ(‘%wmgcodes S

—

vy (O 1
Vil Cogi"(s for, executlon in whlch a run- t:Lme exception or number of Hf

time exception condltlons may encounter, for example square
... of a nega.t:we number or a parcentage value exceedlng 100% or decreggi
Fid below 0% 'I‘he condz.tlon is trapped and on trapping throwgi b

exceptn.on* /

If ((A - B) < 0.1) throw al; x = y + sqrt (A - B); /* Find if & —?¥

r. If yes, throw an EXCeptlon al and call a catch”
functlon) */ :

Y = . ./“* ’Ca‘lculate Yy */

If ((y >10~0§| y < 0) throw a2; /* Find if y > 100. If yes, thr;'

exceptum a2 and call a catch functlon*/

fis

catch (Exception_1l al) {

/* Code for action on throwing (trapping) A - B < 0.0 exception *}‘

Drivers and Interrupts Service Mechanism i

afch {Exception_1l a2
‘i?f

‘ Code for action on throwxng (trapplng) yo< f) or y > 100

ﬂlt?lly { . |
A* QFlnal codes, which should execute ‘on exceptlon or after
try block instructions over */ « o

figh-level Java or Co+ codes when cgmpﬂed. dmng compﬁaam the SWI msmlcm wdlbu mmeéfos»
ngbing (A — B) as a.negative number and for trapping y > 100 or less than O.as follows: . . =

§# Software instruction SWI al MWWWJRW%MWWJ
ig ‘catch (Exception_ 1 al) { }’ exmmoaﬁmwmgoﬁﬂwcmmmaiamymmkmmal i
¢ used after catching the exception al whenever it is thrown.

la Software instruction SWI a2 will cause processor interrupt. In response, the software. ISR | f;mcmn %
i f‘3 ‘catch (Exception_2 a2) { }’ executes on throwing of the exception a2 during tryblock execution.
SWI a2 is used after catching the exception a2 whenever it is thrown.:- - = = i
ﬁ SoftwatemsuucnonSWﬁwﬂmmmmmuptandxnmspansewﬁlﬂgmlwﬁmISR
. {4 function ‘finally { }’ to execute either at the end of the try or at the end of the catch function codes.
4 SWIﬁmuswmbrmewymdmwhfuncuonsﬁmsh,menﬁmllyfmcummuperfmmﬁml
:task,forexampie exit from the program or call another function. =
pmgramundcrexwu&oncumﬁybyﬂnpmwssordae&nmkmwwhenmwﬁmmm
wmeexoepnonsalorﬂorwhenthes:gnalhmdlcrﬁmwsﬁ :

]

n ISR call has the following features.

. An ISR call due to interrupt executes an event. Event can occur at any moment and event occurrences

are asynchronous.

. ISR call is event-based diversion from the current sequence of instructions (routine or program) to

another sequence of instructions (routine or program). This sequence of instructions executes till the

return instruction. ’

. Event can be a device or port event or software computational exceptional condition detected by
hardware or detected by a program, which throws the exception. An event can be signalled by software
interrupt instruction SW1 used in device driving functions create (), open (), etc.

. An interrupt service mechanism exists in a system to call the ISRs from multiple sources (Section 4.4).

‘ Embedded Sys#

< |

5. Diversion to ISR may or may not take place on finishing the execution of any instruction in the
presently running routine. The execution of the ISRs can be masked by an instruction to set a mask bit
and can be unmasked by another instruction to reset the mask bit. [Except a few interrupt soyrces
called non-maskable source (Section 4.4.3).] An instruction in a function or program thread or|task
can disable or enable an ISR call or all ISR calls (Section 4.4.3).

6. On an interrupt call, the instructions do not execute continuously exactly like a C function or a Java
method. These execute as per the interrupt mechanism of the system. For example, ‘refurn’ from an
ISR differs in certain important aspects. An interrupt mechanism may be such that an ISR on begining
the execution may disable automatically other device(s) interrupt services. These are automatically re-
enabled if they were enabled before a service call. Another interrupt mechanism may be such that an
ISR on beginning the execution does not disable automatically other device(s) interrupt services|and
there can be in-between diversion in the case of the unmasked higher priority interrfipts
(Section 4.5.1).

higher priority interrupt either at the end or in-between the interrupted ISR.
Section 7.6 will explain the distinction between functions, ISRs and tasks by their characteristics.

Interrupt is an event from a device or hardware action or software instruction. In response to the intersipt
a presently running program is mterrupted and a service routine executes. The routine is called ISR. i
also called device driver in casé of interrupts from the devices. It is also called exception handler in casid]
interrupts from the software. ISR-based approach facilitates an efficient synchronization of the functién
calls and ISR-calls. The timings when an ISR executes are hardware or software interrupt event depend
There is therefore no waiting period due to no need of device polling.

4.2.3 Interrupt Service Threads as Second-Level Interrupt Handlers

An ISR can be executed in two parts.
1. One part is the short execution time taking service routine and can be called as first-level ISR (FLISR). It
runs the critical part of the ISR and execute a signal function to enable the OS to schedule for runnin
remaining part later. It can also send a message using a function to enable the OS to iniate a task la

after return from the ISR. The task waits during execution of interrupts routines and signal functions.

FLISR does the device-dependent handling only. For example, it does not perform decryption of
received from the network. It simply does the transfer of data to the memory buffer for the device .

2. The second part is the long service routine called interrupt service thread (IST) or second-level SR
(SLISR), which executes on the signal of the first part. The OS schedules the IST as per its pri

IST does the device-independnet handling. IST is also the software interrupt thread as it is triggered

by an SWI (software interrupt instruction) for the signal in FLISR.

Figure 4.3(b) showed used of signal in ISR-FrameRead in digital camera system. Figure 4.5 shows how
ADC scan is initiated by an SLISR call from FLISR. Figure 4.5 shows the FLISR and second-level [ST
approach to handle the device hardware interrupts followed by software interrupts in upper par: and the use of
this approach in a camera in lower part.

Interrupt servxce can be done in two parts a hardware dewce dependent code in the FLISR, which a
short execution time and a software mterrupt initiated SLISR, which is also called IST. A task can alsd
sent message by FLISR. The task runs after the IST. R

vice Drivers and Interrupts Service Mechanism

event et ~| SR S ik
interrupt (first level) Interrupt | (second level)
Read byte Bead byte
Save byte Save byte
Signal thread 1 Signal task
ISR _| 1ST thread 2 -
event e1 > (first level) Interrupt | (second level)
Interrupt Run short code Run remaining codes
Signal thread 2 at thread 2
Camera Start key pressed IST-_ADC thread
Interrupt

| 1. Start ADC scan from first to last pixel in a row and
| : SWI for dark area pixels for finding the offset values .
; nt 1 2. Signal task read frame pixel after each row read

i ISR_Stant (first level) errupt | 3 Repeat steps 1 and 2 for next row till last row

‘g Signal ADC scan

i SWI Interrupt on each signal

Figl 4.5 First-level interrupt service routine and second-level interrupt service thread approach
; to handle the device hardware interrupt followed by the software interrupt to call

SLISR—an IST and the use of this approach in a camera

4.2.4 Device Driver

Eadh device in a system needs device driver routines. An ISR relates to a device driver function. A device
driver is a function used by a high-level language programmer and does the interaction with the device
harfware and communicates data to the device, sends control commands to the device and runs the codes for
reafling the device data. A programmer uses generic commands for the device driver for using a device. The
OS|provides these generic commands.
The examples of generic functions used for the commands to the device are device create (), open (),
ct (), bind (), read (), write (), ioctl () [for 10 control], delete () and close (). Device driver code is
ent in different OS. Same device may have different codes for the driver when the system is using different OS.
device driver function uses SWI, which initiates the interrupt service. The device uses the system and IO
buses required for the device service. Device driver car be considered as a function in software layer of an
apglication program and the device.
or example, the application program sends the commands to write on display screen of a mobile the
conftact names from the contact database. LCD display device driver calls an SWI, and an ISR does that
ut the application programmer knowing how does LCD device interface in the system, what are the
sses which are used, what and where and how are the control (command) and status registers used.
or a programmer, using the device driver’s generic functions for reading or writing from and to the device
ogous to reading or writing any other device or data file except that the device and file have different
ice identity numbers.
i The driver routine controls a device without requiring understanding of the device configuration, control, status,
dath and other registers, when using the generic functions. Device driver runs the ISRs of the device. Each ISR
is the low-level part of the device driver generic function, which executes on software interrupt instruction.

The driver translates a program generic function for using the device and sends the necessary commands to
the| device configuration and control registers. The driver uses the device control, status and data registers.

CO.

=)

E
The driver does the opening, configuring, initializing, attaching, reading, writing, closing and detaching the
device by initiating the corresponding ISRs. f

Drivers of many devices, such as printers, touch screen, LCD display, keypad, keyboard, are part + the
OS. Section 4.9 will describe device drivers in detail.

Each device high-level language program in a system uses device driver functions. A programmer

generic commands, cma&e(),open(),conmct(),bmd(),read() write (), ioctl (), delete () and &
() and uses for each device a device identity number. Device driver executes the SWIs, which call the !
for using the device hardware and memory allotted to that. SWIs are dedicated for the device serwce
perform all the necessary. acuons. o

~ 4.3 " INTERRUPT SOURCES

Hardware sources can be from internal devices or external peripherals, which interrupt the ongoing rogitine
and thereby cause diversion to corresponding ISR. Software sources for interrupt are related to (i) procéssor
detecting (trapping) computational error for an illegal op-code during execution or (ii) execution of an SWI
instruction to cause processor-interrupt of ongoing routine.

Each of the interrupt sources (when not masked) (or groups of interrupt sources) demands a tem: rary
transfer of control from the presently executed routine to the ISR corresponding to the source.

The internal sources and devices differ in different processors or microcontrollers or devices and their
versions and families. Table 4.1 gives a classification as hardware and software interrupts from several soufces.
Not all the given types of sources in the table may be present or enabled in a given system. Further, there
be some other special types of sources provided in the system.

Hardware Interrupts Related to Internal Devices There are number of hardware interrupt s
which can interrupt an ongoing program. These are processor or microcontroller or internal device hard
specific. An example of a hardware-related interrupt is timer overflow interrupt generated by the microcon
hardware. Row 1 of Table 4.1 lists common internal devices interrupt sources.

Hardware Interrupts Related to External Devices —~1 There can be exteinal hardware inte
source for interrupting an ongoing program that also provides the ISR address or vector ady
(Section 4.4.1) or interrupt-type information through the data bus. Row 2 of Table 4.1 lists
interrupt sources. External hardware interrupts with ISR addresses information sent by the devices themsdlves
(Section 4.4.1) and are device hardware-specific.

Example 4.7 .

two cycles of acknowledgements in twe clock eycles through the INTA (interrupt acknowledgemeni” |
_pin. During the second cycle ofaclmowledgemnt,thc external device sends the type of mterrupt .
“information on déta bus. Information is-for one byte n. 80x86 internally signals instruction INT n,
which means thaf'it executes interrupt of type n, where n can be between 0 and 255. INT n causes
the processor vectoring to address 0x00004 X n. [SWI in 80x86 is denoted by INT.]

Dw Drivers and Interrupts Service Mechanism ' S ‘ : '5?‘».'

Hardware Interrupts Related to External Devices — 2 External hardware interrupts with their ISR
vector |laddresses (Section 4.4.1) are processor or microcontroller-specific interrupts of an ongoing program.
Externgll interrupting source does not send interrupt-type or ISR address-related information. An example of
externdl hardware-related interrupt in which the interrupt-type information internally generates is an interrupt on
NMI (gon-maskable interrupt) pin in the 80x86 processor. Row 3 of Table 4.1 lists these interrupt sources.

Table 4.1 Classification and Sources of Interrupts?!

.
S our&s : Examples

Int hardware device sources 1. Parallel port; 2. UART serial receiver port — [Noise, Overrun, Frame-Error,
IDLE, RDRF in 68HC11]; 3. Synchronous receiver byte completion; 4. UART
serial transmit port-transmission complete [e.g. TDRE (transmitter data
register Empty); 5. Synchronous transmission of byte completed; 6. ADC
start of conversion; 7. ADC end of conversion; 8. Pulse-accumulator
overflow; 9. Real-time clock time-outs (Section 3.8); 10. Watchdog timer resets
(Section 3.7); 11. Timers overflows on time-out (Section 3.6); 12. Timer
comparison with output compare register; 13. Timer capture on input

(Section 3.6)
Exterpal hardware devices INTR in 8086 and 80x86
providing the ISR address or
vectot address or type externally’ ’ o o
Exterpal hardware devices with 1. Non-maskable pin [NMI in 8086 and 80x86]; 2. Within first few:clock "

vector address generation cycles unmaskable declarable pin (interrupt request pin) but otherwise maskable
XIRQ [in 68HC11]; 3. Maskable pin (mtmupt request pm) [INTOand INT 1
-in.8051, IRQ in 68HC11]}

e error-related sources 1. Division by zero detection (or trap) by hardware; 2. Over-flow by hardware;
jons’ or SW-traps) 3. Under-flow by hardware; 4. Tllegal opcode by hardware

e instruction-related sources Programmer—defined exceptions® or traps for handling excepuonal run-time
ions*or SW-traps SW-signal) conditions or programmer-defined signal for executing ISR to handle further
actions or s:gnals from device driver functlons

or-specific examples are in bracket.
ple 4.7 explains this.
ocessor internally generates a trap or exception. An example is division by zero in 80x86. Example 4.8 explains

4The jsecond type of exception is the user program-defined exception. Example 4.6 explained this. Signal is a term
sométimes used in high level program for software interrupt instruction in assembly language. For example, in
VxWorks RTOS. [Refer Section 9.3.] Signal or exception is an interrupt on the setting of certain conditions or on
#hing certain results or output during a program run or a signal for some action. The condition examples are square root of a
negafive number or percentage computation resulting in values greater than 100% or an IO connection not found.

So, re Error-Related Hardware interrupts There can be the software-error related interrupts
generdted by processor hardware. Each processor has a speeific instruction set. It is designed for that set only.
An ilregal code (instruction in the software) is an instruction, which does not correspond

| Embedded $

i

i

to any instruction in this set. Whenever the processor fetches illegal code, an interrupt occurs i | certain
processors. The error-related interrupts are also called hardware-generated software traps (or spftware
exceptions). A software error called trap or exception may generate in the processor hardware for an illegal or
not-implemented opcode found during execution. The examples are as follows: (i) There is an illegallopcode
trap in 68HC11. This error causes an interrupt to a vector address (Section 4.4.1). (ii) Non-implenjentable
opcode error causes an interrupt to a vector address in 80196.

Software error exception or trap-related sources cause the interrupt of an ongoing program computgtions in
certain processors. Examples are the division by zero (also known as type O interrupt as it is also gene by a
software interrupt instruction INT 0 in 80x86) and overflow (also known as type 2 interrupt as it is also g nerated
by Int 2 instruction) in 80x86. These two interrupts, types 0 and 2 are generated by the hardware within the ALU
of the processor. Row 4 of Table 4.1 lists these interrupt sources. Example 4.8 explains a software-related trap or
exception, which is an interrupt generated by the processor hardware on division by 0.

Example 4.8

Assume that a division by zero occurs during execution of a certain instruction of a program. An SR is
needed which must execute whenever the division by zero occurs. This ISR could be to dlsplay ‘A 181011

this internal error flag (a hardware signal). The service routine executes by using an interrupt mechanid
which is meant for service on a zero-division error-signal. On setting of the signal, an interrupt oé
the ongoing program happens just after completing the current instruction that is being executed,
and then the ISR executes for postzero division tasks after resetting the flag.

Software Instruction-Related Interrupts Sources A program can also handle specific computational
errors or run-time conditions or signalling some condition. For instance, Example 4.6 showed the handling of
negative number square root SWI, which is handled by SWI instruction in the instruction set of a processor.
Processors provide for software instruction(s) related to the traps, signals or exceptions.
1. There are certain software instructions for interrupting and then diverting to the ISR also called the
signal handler. These are used for signalling (or switching) to another routine from an ongoing|routine

or task or thread (Section 7.10). Figure 4.4(b) showed the signal generated by SWI and signal h4ndling.

2. Software instructions are also used for trapping some run-time error conditions (called throwing
exceptions) and executing exceptional handlers on catching the exceptions (Example 4.6). v

An example of a software interrupt is the interrupt generated by a software instruction INT n in th¢ 80x86
processor or SWI in ARM7. Row 5 of Table 4.1 lists these interrupt sources. SWI instruction differj from a
function call instruction as follows.
1. Software interrupt in 68HC11 is caused by instruction, SWI. i

2. There is a single byte instruction INTO in 80x86. It generates type O interrupt, which means that the
interrupt should be generated with the corresponding vector address 0x00000. Instead of the type 0
interrupt that 8086 and 80x86 hardware may also generate on a division by zero, the instruction INTO

does exactly that.

Drivers and Interrupts Service Mechanism

There is another single byte 8086 and 80x86 instruction TYPE3 (corresponding vector address
0 x 00COH). This generates an interrupt of type 3, called break point interrupt. This instruction is like
1 a PAUSE instruction. PAUSE is a temporary stoppage of a running program. It enables a program to

do some housekeeping, and return to the instruction after the break point by pressing any key.

"4, There are another 80x86 two-byte instruction INT n, where n represents the type and is the second
byte. This means ‘generate type n interrupt’ and processor hardware get the ISR address by computing
by the vector address 0x00004 x n. When n = 1, it represents single-step trap in 8086 and 80x86.
There is another 80x86 instruction, which uses a flag called trap and is denoted by TF. This flag is at the
FLAG register and EFLAG register of 8086 and 80x86, respectively. This means when TF sets (written

: ‘1’), automatically after every instruction, the processor action causes an interrupt of type 1 repeatedly.
| The processor fetches each time the ISR address from the vector address 0x00004 (same as type 1
| interrupt address). INT 1 software instruction will also cause type 1 interrupt once but the TF flag set
instruction action is identical to the action caused at the end of each instruction after type 1 interrupt.
. There is instruction in 80196 called Trap. It enables debugging of instructions. Till the next instruction
. after the Trap is executed, no interrupt source can interrupt the process and cause diversion to ISR.
SW]—related details in the instruction set help in programming the program diversion to ISR on exception.
The éxcepuonal condition if occurs (sets) during execution, causes a diversion to the ISR called exception
handler or signal handler using the software instruction for interrupt in the set.
A jprogrammer can program for the exception on a queue (a memory buffer similar to a print buffer) getting
full. This is an exceptional run-time condition. It should cause the diversion to routine called exception handler
functjon that initiates the appropriate action. Exceptions are important routines for handling the run-time errors.

Software instruction-related or software—deﬁned condltlon related software mterrupts are used in the

rocontroller-specific. Vectoring is as per the provisions in interrupt-handling mechanism. The various

mechanisms are as follows:

Progessor Vectoring to the ISR_ VECTADDR On an interrupt, a processor vectors to a new address,
ISR_VECTADDR. It means that the PC (program counter), which has the instruction address of next instruction,
savey that address on stack or in some CPU register, called link register and the processor loads the
ISR_VECTADDR into the PC. The stack pointer register of CPU provides the saved address to enable
returp from the ISR using the stack. When the PC saves at the link register it is part of the CPU register set.
Sectipn 4.6 will explain the mechanism for saving the CPU registers in detail. The ISR last instruction is RETI
(retugn from interrupt) instruction.

| | | Embedded Sy*ms
;

A processor provides for one of the following ways of using the ISR_VECTADDR-based addr+ssing

mechanism. |

{
Processor Vector Address i
1. A system has internal devices like the on-chip timer and A/D converter. In a given microcon
each internal device interrupt source or source-group has a separate ISR_VECTADDR address
external interrupt pin has separate ISR_VECTADDR. An example is 8051. Figure 4.6(a) sho
ISR_VECTADDRS for the hardware interrupt sources. A very commonly used method is
internal device (interrupt source or interrupt source group) in the microcontroller autogeneral
corresponding interrupt vector address, ISR_VECTADDR. Thus vector addresses are speci
specific microcontroller or processor with that internal device. An internal hardware signal fro
device is sent for the interrupt source or source group.

oller,
Each
s the

s the
¢ for
the

2. In 80x86 processor architecture, a software instruction, for example, INT n explicitly also defines the
type of interrupt and the fype defines the ISR_VECTADDR. Figure 4.6(b) shows the ISR_VECTADDRs
with different vector addresses for different interrupt types. This mechanism results in the handling of

n number of exception handling routines or ISRs for n interrupt types.

ISR_VECTADDR 1 From a vector
ISR_VECTADDR 2 address either the 4-
Devices vector addresses of interrupts ISR _VECTADDR 3 or 8-b¥te shonJISR
 hardware in source — executes or a Jum
"om s e interrupt ® ISR_VECTADDR 4 instruction execute‘;
ISR_VECTADDR 5 for the long ISR
ISR_VECTADDR 6 | —jcodes ata new
~— starting address

(a

l INTn ’ Processor finds the ISR vector address !ISR_VECTADDRn i
from the four bytes at ISR_VECTADDRnN ISR

which computes from n address

l Each hardware or software interrupt source has a type n I

(b)
swi ISR (SWI handler) vector From the common vector address, the
software address, from here program call to required SWI handler routine is
_interrupt flows using 4-byte instruction made as well as handler input-parameter
instruction to another common vector address is computed
address for all SWI handlers

]
Fig. 4.6 (a) ISR_VECTADDRs for hardware interrupt sources (b} ISR_VECTADDRs with di

rent

vector address for different interrupt types using INT n instruction (c) The ISR_VECTADDR

with common vector addresses for different exceptions, traps and signals using so
interrupt instruction SWI

3. In ARM processor architecture, the software instruction SWI does not explicitly define the ty
interrupt for generating different vector address and instead there is a common ISR_VECTADD
each exception or signal or trap generated using SWI instruction. ISR that executes after vectoring

are

pe of
R for
has to

H
i
§

yig# Drivers and Interrupts Service Mechanism 205

find out which exception caused the processor to interrupt and divert the program. Such a mechanism in
the processor architecture results in provisioning for the unlimited number of exception handling routines
in the system all having the common interrupt vector address. Figure 4.6(c) shows the ISR_VECTADDR
with common vector address for all exceptions, traps and signals resulting from SWI.

up of Interrupt Sources having Common Vector Address A source group in the hardware
ave the same ISR_VECTADDR.

hp identical ISR VECTADDR. Tl is an interrupt that is generated when the serial buffer register for
trandmission completes serial transmission, and R1 is when the buffer receives a byte from the serial receiver.
ISR jt the ISR_ADDR to which the program jumps or which is called from bytes at the ISR_VECTADDR
mﬁs first identify the interrupt source (whether TI or RI) in case of the identical vector address or ISR

Hrpss for a group of sources. Identification is from a flag in the status register. Setting of a specific

d flag in the device flag register enables identification of the interrupt source in the group by

ISR that runs after vectoring.

here are two types of handling mechanisms in processor hardware. The processor-handling mechanism
provides for fetching into the PC either (i) the ISR instruction at the ISR_VECTADDR or (ii) the ISR address
from the bytes at the ISR_VECTADDR.

1, There are some processors, which use ISR_VECTADDR directly as ISR address and the processor
fetches the ISR instruction from there, for example, ARM or 8051. The ARM permits the use of
4-byte instruction for the jump to the ISR (routine for the interrupt servicing). Figure 4.7(a) shows the
use of ISR_ VECTADDR in ARM for the jump to the routine for the interrupt servicing. The 8051
microcontroller permits the use of short ISR of maximum 8 bytes for the internal devices. The short
ISR codes can also use a call instruction to call a detailed routine. Figure 4.7(b) and (c) shows the use
of ISR_ VECTADDR in 8051 in case of short-code and long-code ISR, respectively.

2| There are some processors, which use ISR_VECTADDR indirectly as ISR address and the processor
fetches the ISR address from the bytes saved at the ISR_VECTADDR, for example, 80x86.
Figure 4.7(d) shows the use of ISR_ VECTADDR address in 8086. Processor of interrupt of type n
. vectors to address 0x00004 x n and fetches 16 bits for sending into IP (instruction pointer register)
and another 16 bits for sending into CS (code segment register) The ISR for interrupt will execute
from address 0x100000 x CS + IP.

Intetrupt Vector Table System software designer must provide for specifying the bytes at each
ISR_VECTADDR address. The bytes are for either ISR short code [Figure 4.7(b)] or jump instruction to the
ISR first instruction [Figure 4.7(a)] or ISR short code with call to the full code of the ISR [Figure 4.7(c)] or for
fetching the bytes for finding the ISR address [Figure 4.7(d)].

A ltable facilitates the service of the multiple interrupting sources for each internal device. Each row of
table has an ISR_VECTADDR and the bytes are saved at each ISR_VECTADDR. Vector table location in the
mempry depends on the processor. It is located at the higher memory addresses, 0xFFCO to OxFFFB in
68HC11. It is at the lowest memory addresses 0x00000 to 0xO03FF in 80x86 processor. It starts from the
lowest memory addresses 0x00000000 in ARM7. Figure 4.8 shows a vector table in the memory in case of
multiple interrupt sources or source groups.

‘ Embedded sﬁt}t{ms

|
An external device may also send to the processor the ISR_VECTADDR through the data bus (row 2,
Table 4.1). i

An interrupt vector is an important part of interrupts service mechanism, which associates a processg
processor first saves the PC and/or other registers of CPU on interrupt and then loads a vector address it
PC. Vector address provides the ISR or ISR address to the processor for an interrupt source or a g
sources or for the given interrupt type. The interrupt vector table is an important part of interrupts
mechanism, which associates the system provisioning for the multiple interrupt sources and source

ARM SWiI > ISR (SWI handler) vector ™1 From the common vector address, using

8-bit opcode address = 0x00000008. 24 bits, the call to required SWI handler
and From here program flows to routine is made as well as handler input-
24 bits for another common vector parameter address is computed

ISR parameters address for all SWI handlers
(a)

INTO 0x0003 D
10 O0x000B 1 Atavector
INT1 0x0013 address the
T 0x001B fs'gyte short
Serial 0x0023 executes
T2 0x002B D

8051 vector addresses of interrupts from the hardware interrupt sources.
(b)

INTO 0x0003] From a vector
TO 0x000B ~—__| address a Jump
instruction
INT 0x0013 ™ executes for
T 0x001B ~—— the long
Serial 0x0023 ~— ISR f;odes at ISR
starting address
T2 0x002B

[8051 vector addresses of interrupts from the hardware interrupt sources. |
(o)

INTn Processor finds the ISR vector IP-L [16°CS+IP] |
address from two (IP) bytes and IP-H . ISR
two (CS) bytes at n 0x00004, CsL address
wheren=0or1or... 'CS-H
[Each 80x86 hardware or software interrupt source has a type n |
(o)

Fig. 4.7 (a) Use of ISR_ VECTADDR in ARM for the jump to the routine for the interrupt seryicing
(b) Use of ISR_ VECTADDR in 8051 in case of short-code interrupt service routine| (ISR)
(c) Use of ISR_ VECTADDR in 8051 in case of long-code ISR (d) Use of ISR_ VECTADDR
address in 80x86 processors

Deir ff Drivers and Interrupts Service Mechanism 207
ISR 1 address — ISR_VECTADDR int 1 - 1;:::?
ISR_VECTADDR int2 address
n hardware and [-
software interrupt |SR_VECTADDH intn -1
sources ISR_VECTADDR intn

Lookup table for n addresses of handlers for exceptions, traps, and device interrupts

i
4

Fig. a Vector table in memory in case of multiple interrupt sources or source groups

4.4.2 Classification of All Interrupts as Non-Maskable and Maskable
. Interrupts

Maskdble sources of interrupts provide for masking (no diversion) and unmasking the interrupt services
(diversion to the ISRs). Execution of ISR for each device interrupt source or source group can be masked or
. An external interrupt request can also be masked. Execution of a software interrupt (trap or exception
or sighal) can also be masked. Most interrupt sources are maskable. A few specific interrupts cannot be
masked. A few specific interrupts can be declared non-maskable within few clock cycles of the processor
reset, else that is maskable. There are three types of interrupt sources in a system.

1.} Non-maskable: Examples are RAM parity error in a PC and error interrupts like division by zero.
These must be serviced.
Maskable: Maskable interrupts are those for which the service may be temporarily disabled to let
higher priority ISRs be executed first uninterruptedly.
Non-maskable only when defined so within few clock cycles after reset: Certain processors like 68HC11
has this provision. For example, an external interrupt pin, XIRQ interrupt, in 68HC11. XIRQ interrupt
is non-maskable only when defined so within few clock cycles after 68 HC11 is reset.

Enabling (Unmasking) and Disabling (Masking) in Case of Maskable
Interrupt Sources

be interrupt control bits in devices. There may be one bit EA (enable all), also called the primary-level
abling or disabling the complete interrupt system. When a routine or ISR is executed by the codes in a
section, an instruction DI (disable interrupts) is executed at the beginning of the critical section and
instruction EI (enable interrupts) is executed at the end of the critical section. DI instruction resets the

by protecting its modification by another ISR or routine.
re may be multiple bits denoted by E, ... E,_; for n source group of interrupts in case of multiple
. These bits are called mask bits and are also called secondary-level bits for enabling or disabling

total rhaskable interrupt sources are disabled.

Example 4.10

Consider a system in which there are two timers and each timer has an interrupt control bit. Timer ini ,
control bits are ETO and ET1. Consider a system in which there is an SI device and an interrupt contipl;
ES, common to serial transmission and seriat receptlon There is an EA bit to interrupt control for disaby
all interrupts. ~
When EA =0, no mterrupt is.recognized and timers as well as SI interrupts service is dlsabled

WhenEA =1,ET0=0,ETl1 =1and ES =1, mterrupts from timer | and SI are enabled and timer §
0 mterrupt is disabled (masked) -

4.4.4 Status Register or Interrupt Pending Register

An identification of a previously occurred interrupt from a source is performed by one of the following:
1. A local-level flag (bit) in a status register, which can hold one or more status flags for the pne or
several of the interrupt sources or groups of sources.
2. A processor-interrupt service pending flag (boolean variable) in an interrupt-pending register (IPR),
that sets by the source (setting by hardware) and auto-resets immediately by the internal handware

when at a later instant, the corresponding source service starts diversion to the corresponding JSR.

Y oi
Example 4.11 ‘
Consider a system in which there are two timers and each timer has a status bit TFO and TF1. Coanr a
system in which there is SI device there are the status bits TXEMPTY and RxReady for serial transmhigsion
completed and receiver data ready. i
1. The ISR_T1 corresponding to timer 1 device reads the status bit TF1 = 1 in the status reg:ster@: i’{nd
that timer 1 has overflowed; as soon as the bit is read the TF1 resets to 0.
2. The ISR_TO corresponding to timer 0 device reads the status bit TF1 = 0 in the status register find
- that timer 0 has overflowed; as soon as the bit is read the TFO resets to 0. 3
3. The ISR corresponding to the SI device is common for the transmitter and the receiver. The I§R
reads the status bits TXEMPTY and RxReady in the status register to find whether a new byt§ :
is to be sent to the transmit buffer or whether the byte is to be read from the receiver buffer. As §
soon as the byte is read the RxReady resets and as soon as the byte is written into the SI for - §
transmission, TXEMPTY resets.

Some processor hardware provide for use of status register bits and some IPR bits. The IPR and|status
registers differ as follows. The status register is read only. (i) A status register bit (an identification flag) is
read only, and is cleared (auto-reset) during the read. An IPR bit either clears (auto-resets) on the seryice of

the multiple interrupts.

Properties of the interrupt flags are as follows. A separate flag for every identification of an occ
from each of the interrupt sources must exist. The flag sets on occurrence of interrupt: (i) It is present either in
the internal hardware circuit of processor or in the IPR or in the status register. (ii) It is used for a read by

bbo Drivers and Interrupts Service Mechanism | ' '

procdssor or instruction after a write by the interrupting source hardware. (iii) It resets (becomes inactive) as
soonlas it is read. This is auto-reset characteristic provided in most hardware designs in order to enable this
flag o indicate the next occurrence from same interrupt source. (iv) If set at once, it does not necessarily mean
that i will be recognized and serviced later using an ISR. When a mask bit corresponding to that interrupt is
set, aven if the flag sets, the processor may ignore it unless the mask (or enable) bit modifies later. This makes
it posible to prevent an unwanted interrupt from being serviced.

dimple 4.12
sider a touch screen. »]
4 generates an interrupt when a screen position is touched. A status bit b, is also set. It activates a
ferupt request (IRQ). From the status bit, which is set, the interrupting source is recognized among the
sbuces group (multiple sources of interrupts from same device or devices). The ISR_VECTORpq and
IS Rigq are common for all the interrupts at IRQ. : i
¢ JRQ results in processor vectoring to an ISR_VECT! OR o Using ISR_VECTORpq when the ISRgq
$afts, ISRy instruction reads the status register and discovers that bit b, as set. It calls for service
! :‘on (get_touch_position), which reads register Ry, for touched screen position iﬁformatim This

on of reading b, also resets the b, if the touch screen controller-processing element provides for
+resetting of b,. This enables next IRQ interrupt and thus reading next-position on next touch.

N

5 ~ MULTIPLE INTERRUPTS

.1 Multiple Interrupt Calls

Wheén there are multiple interrupt sources, each occurrence of interrupt from a source (or source group) is
ifiable from a bit in the status register and/or in the IPR (Section 4.4.4). There can be interrupt service
call$ in succession case higher priority interrupt sources activate in succession. Then return from high priorit
ISR} is to lower priority pending ISR.

Ilet us understand two processor interrupt service mechanisms for the case of multiple interrupts.

1. Certain processors do not provide for in-between routine diversion to higher priority interrupts and
presume that all interrupts or interrupts of priority greater than the presently running routine are masked
till the end of the routine. Figure 4.9(a) shows diversion to higher priority interrupts at the end of the
present interrupt service routine only.

2. Certain processors permit in-between routine diversion to higher priority interrupts. Figure 4.9(b)

shows the actions in such processors. These processors provide, in order to prevent diversion

in-between, a mechanism as follows: There is provisioning for masking of all interrupts by a primary-
level bit. These processors also provision selective diversion by provisioning for masking the interrupt

service selectively by secondary-level bits (Section 4.4.3).

4.5.2 Hardware Assigned Priorities

There is assigned priority order by hardware. ARM7 provides for two types of external interrupt sources (requests),
IRQs and FIQs (fast interrupt requests). 8051 provides for priority order in order of interrupt vector addresses.
Lower address has highest and higher has the lower priority. Interrupts in 80x86 are assigned priority order

according to interrupt-types. Interrupt of type 0 has highest priority and 255 has lowest assigned priority.
!

i

Embedded Sys'géa,s

A .
Started at time t, Starts after time t, + t’ only
\ . where t’ is context switch time
o 7| ISR shouid be
ISR H@M coded short to
Processor _ ISR " | enable higher priority
Tame i) ISRs to get attention fast.

< A .
High priority interrupt event Finishes at time t,
Occurs at t, after tg @

a

1 Started attime to Starts after time t; + t’ where t’ is
N context switch time
? / 7] ISR should be
ISR High priority. | coded short to
Processor ISR 1 enable low priority
i 7 U1 1SRs to get attention fast.
. \ stops at time t
High priority interrupt event e Finishes at time
Occurs at t, after tg Resumes at time tp+ t’

(b)

Fig.4.9 (a)Diversion to higher priority interrupts at the end of the present interrupt service romjt
only (b) In-between routine diversion to higher priority interrupts unless all interrup
interrupts of priority greater than the presently running routine are masked

ne
S or

When there are multiple sources of interrupts from the multiple devices, the processor hardware assigas to
each source (including traps or exceptions) or source group a preassumed priority (or level or type). Lét us
assume a number, py,,, that represents the hardware-presumed priority for the source (or group). Let the number
be among 0, 1, 2, ..., k, ..., m - 1. Let p,,, = 0 mean the highest; Pnw = 1 next to highest........ Phw =m— 1
assigned the lowest. Why does the hardware assign the presumed priority? Several interrupts occur af the
same time during the execution of a set of instructions, and either all or a few are enabled for service. [The
service using the source corresponding to the ISRs can only be done in a certain order of priority. (Thete is
only one processor.) Assume that there are seven devices or interrupt source groups. The processor’s hardware
can assign py,,, =0, 1, 2, ..., 6. The hardware service priorities will be in the order Pw=012...,6.

Software assigned priorities override these priorities, for example in 8051. Section 4.6.3 will explain this péint.

Consider the example of the 80x86 family processor. Consider its six interrupt sources; division by £10,
single step, NMI (non-maskable interrupt from RAM parity error and so on), break point, overflow and
screen. These interrupts are presumed to be of Pw=0,1,2,3,4and 5, respectively. The hardware pro
assigns the highest priority for a division by zero. This is so because it is an exceptional condition fou
user software. The processor assigns the single stepping as the next priority as the user enables this sou
interrupt because of the need to have a break point at the end of each instruction whenever a debu,
software is run. NMI is the next priority because external memory read error needs urgent attention.
screen has the lowest priority.

Which is the Interrupt to be Serviced First among those Pending? Some Way of Pol

Resolves this Question. The 8086 has a ‘Vectored Priority Polling Method’ A processor
interrupt mechanism may internally provide for the number of vectors, ISR_VECTADDRs. The vectdred
priority” method means that the interrupt mechanism assigns the ISR_VECTADDR as well as Phw- Therelfisa

ge Drivers and Interrupts Service Mechanism @

call ag the end of each instruction cycle (or at the return from an ISR) for a highest priority source among those
enabled and pending. Vectored prioritie. in 80x86 are as per the Nyype- Nyype = O highest priority and n,, =
OxFF |(=255) lowest priority.
Wh n there are muluple device drivers, traps, exceptions and signals as a result of hardware and software
1nfe upts the assignment of priorities for each source or source group is required so that the ISRs of
er deadline execute earlier by assigning them higher priorities. Hardware-defined priorities are used
as fault. Software as<’ ued priorities override these priorities, for example, in 8051.

CONTEXT AND THE PERIODS FOR CONTEXT SWITCHING,
INTERRUPT LATENCY AND DEADLINE

Gettirjg an address (pointer) from where the new function begins, loading that address into the PC and then
executing the called function’s instructions will change a running function at the CPU to another. Before
execufing new instructions of the new function the processor or the OS also saves the current program’s status
word,| registers and program contexts. If not done automatically by the processor or the OS, then the new
functipns, instruction should do that. This is because these (status word and registers) may be needed by the
newly called function. CPU registers including processor status word, registers, stack pointer and program
current address in the PC define a function’s context. Figure 4.10(a) shows a current program context. What
should exactly constitute the context? It depends on the processor or the operating system superv1s1ng the
progr.

The context must save if a function program or routine left earlier has to run again from the state which was
left. When there is a call to a function (called routine in assembly language, function in C and C++, method in
Java also called task or process or thread when it runs under supervison of the OS), the function or ISR or
excepfion-handling function executes by three main steps.

{ Saving all the CPU registers including processor status word, registers and function’s current address
for next instruction in the PC. Saving the address of the PC onto a stack is required if there is no link
register to point to the PC of left instruction of earlier function. Saving facilitates the return from the
new function to the previous state.

2. Load new context to switch to a new function.

3. Readjust the contents of stack pointer and execute the new function.

se three actions are known as context switching. Figure 4.10(b) shows a current program’s context
sw;::&ng to the new context.

The last instruction (action) of any routine or function is always a return. The following steps occur during
return{ from the called function.
| Before return, retrieve the previously saved status word, registers and other context parameters.

2. Retrieve into the PC the saved PC (address) from the stack or link register and load other part of saved
context from stack and readjust the contents of stack pointer.
3. Execute the remaining part of the function, which called the new function.

These three actions are also known as context switching.

We can say that on interrupt or function call and return the context switches and a new program is executed
whengver the new context loads into the processor CPU registers. Figure 4.10(c) and (d) shows context
switching for new routine and another context switch on return or on in-between call to another routine.
Nestifjg means one function calling the second which in turn calls the third and so on and the return to the
calling functions will be in the reverse order. In case of function calls there is nesting and in the case of
multiple ISRs because of the presence of multiple interrupts there may or may not no nesting.

[y

—

212

Current Program context

= PC (Program counter)

- . Context .
SP (stack pointer) .~ Switching

- CPU registers .. : Save current function or ISR context on stack
Processor status registet .. and load new function or ISR context

(@ b

I Current routine '/}=

[Steps on switching for new routine J

Context
/ Switching

1 [Save current routine context on stack and load new routine context]

2[Execute new routine codes |

3 On return save new routine context and switch for the previous
routine by retrieving the saved context
/ Context Switching | .~
(@
Starts after time t, + ' where t'is Starts after time tp + '~
context switch time - where t'is context switch time
_ISRor > Higher Higher
" ‘program ipriority ISR priority ISR
Context Switching at t; /(:omext Switching at tp

(@)

Fig. 4.10 (a) Current program context (b) New program executes with the new context gf the
called function or routine (c) Context switching for new routine and another switch on
the return from routine (d) Context switching for new routine and another swit¢h on
return or in-between the call to another routine

Context switching means saving the context of the interrupted routine (or function) and then retrieving or
loading the new context of the called routine. Example 4.13 shows how the context switching takes place in
the ARM processor.

Example 4.13
Context switching is as follows in the ARM7 processor on ISR call. (i) The interrupt mask (disable) flag
set. (Disable low priority interrupts.) (i) Next instruction PC is saved at link register. (iii) Current prog
status register (CPSR) copies into the saved program status register (SPSR) and CPSR storest new
during new instructions. (iv) PC gets the new value as per the interrupt source from the vec. « table. Ag |
ISR return context switching back to the previous context is as follows. (i) PC is retrieved from lmk
register. (ii) The corresponding SPSR copies back into the CPSR. (iii) The interrupt mask (disable)
flags are reset. (Enable again the earlier disabled low priority interrupts.)

Drivers and Interrupts Service Mechaaism 213

The time taken in context switching, T, has to be included in a period called interrupt latency period,
xample 4.14 shows how *z >alculate the context switching time period, which is to be accounted in
ing the interrupt latency (Section 4.6.1).

mple 4.14

E

%%ARM7 processor context switching’s minimum period“equ'als’ two clock cycles plus 0-20 clock
}! cycles for finisk_ug an ongoing instruction plus 0-3 cycles for aborting the data. The 0 cycle when an
Tinterrupt - -curs just before the end and 3-20 when during an instruction. Longest time taken for an
+ ARM instruction is 20 cycles. ’ ' : o
241 During ontext switching for new routine call or for return, CPSR copies into SPSR on switching
| from a routine. CPSR means current program status register and SPSR means saved
| program status register. 3 cycles are taken in switching the CPSR.

13t Two clock cycles are needed for the start of the execution stage of switched routine’s first
i {1 instruction. : g ' w

ing the processor data means CPSR not coping into an SPSR. Then step 2 three cycles are not taken up.
{ I} » Minimum period is thus four (2 + 2) for data abort interrupt. [Steps 1-and 2 above]

322 Maximum is 27 clock cycles (2 + 20 + 3 +2) for other than data abort interrupt. Maximum is when

§ ; the interrupt occurs just at the start of execution of the longest time taking instruction in the

| |1 processor. [Steps 1, 2 and 3 above] '

T

ffor any latency period caléulaﬁon, 27 clock cycle periods as context switching time are

g into account when estimating latency in an ARM-based system.

running program has a context at an instant. Context reflects a CPU state {PC, stack pointer(s),
gers and program state (variables that should not be modified by another routine). Context saving on
gall of another ISR or task or routine is essential before switching to another context.

4.6/1 Interrupt Latency

Wheh an interrupt occurs the service of the interrupt by executing the ISR may not start immediately by
contéxt switching. The interval between the occurrence of an interrupt and start of execution of the ISR is
callefl interrupt latency.

. 1. When the interrupt service starts immediately on context switching the interrupt latency T, equals
the context switching period. When instructions in a processor take variable clock cycles, maximum
clock cycles for an instruction are taken into account for calculating the latency. Figure 4.11(a) shows
latency in case the interrupt service starts immediately.

. When the interrupt service does not start immediately but context switching starts after all the ISRs
corresponding to the higher priority interrupts complete the execution. If the sum of time intervals for
completing the higher priority ISRs equals ZT,,. , then interrupt latency equals Tyyen + ZTexec:
Figure 4.11(b) shows latency in case the interrupt service starts after present ISR of higher priority
interrupt completes the execution.

B. We disable the interrupt system when a routine enters a critical section and enable the interrupts when the

routine exits the critical section codes. A routine of function or ISR may consist of codes for critical

region instructions and before the critical section codes all the interrupts are disabled and enabled by the

IO
-

214

Embedded Sy@@s

end of the critical section. T, may or may not be included depending on the programmer’s appkach.

Let Tgisapi be the period for which a routine is disabled in its critical section. The interrupt service
from the routine with the interrupt-disabling instruction (because of the presence of the routi
critical section) for an interrupt source will be Tqy ;e + ZT,, + Tisante- Figure 4.11(c) shows i
latency as sum of the periods for T, ZT,ye and Ty, When the presently running routine

interrupted is executing critical section codes.

Worst case latency is sum of the periods Ty, , ZTexec and T,y Where the sum is for the interrupts of
higher priorities only. Minimum latency is the sum of the periods Towitch and T When the interrupt is of the
highest priority. For latency computations, worst case is taken into account.

Starts after time ty+ t” only where t’ is context switch time

.y

Interrupt latency = t’ only where t’ is

ISR context switch time for saving the

Low priority interrupt event
occurs at t; after tg

Fig. 4.11 (a)Latency in case the interrupt service starts immediately (b) Latency in case the intej'upt
service starts only after the interrupt service routine presently running completes exec

Critical section
codes (Time
spent = Tgisanle)

)
Processor
interrupt at t
(a)
Started at time to+ t¢
K >
ISR
Processor

Finishes at time t,

(b)

(c)

running program context and
loading the new routine context

Starts after time t, + t¢ only
where t¢ is context switch time

Interrupt latency = t, -ty + t’ where
t’is context switch time for saving
the running program context and
loading the new routine context

Interrupt latency = Texec + Tdisable + Tswitch
where Tsyiten is context switch time for
saving the running program context and
ISR loading the new routine context , Tgisanie iS
time for which interrupts remained disabled
in critical period and Teyec is time for which
other high priority routines executed

cy
with
rrupt
ta be

tion

(c) Interrupt latency as sum of the periods for T, ZTeec and Ty, When the presgntly
running low priority routine to be interrupted is having critical section codes

Example 4.15

80196 microcontroller has an SI device which has a FIFO (first in first out) buffer and the SI reads,;
bytes and puts it in the buffer. SI generates three interrupts: RI on one byte reception, FIFO_4%

interrupt when FIFO is half full and FIFO_Full interrupt when the FIFO is full. Assume that a microcontré
has two devices: SI similar to 80196 and timer T. SI has a serial input buffer of 8 bytes (a FIFO of 8 b

%

